ResInsight/ApplicationCode/ReservoirDataModel/RigGeoMechWellLogExtractor.cpp

212 lines
8.8 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
//==================================================================================================
///
//==================================================================================================
#include "RigGeoMechWellLogExtractor.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigGeoMechCaseData.h"
#include "RigFemPartResultsCollection.h"
#include "RigWellLogExtractionTools.h"
#include "RigWellPath.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor(RigGeoMechCaseData* aCase, const RigWellPath* wellpath)
:m_caseData(aCase), m_wellPath(wellpath)
{
calculateIntersection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::curveData(const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values)
{
CVF_TIGHT_ASSERT(values);
if (!resAddr.isValid()) return ;
const RigFemPart* femPart = m_caseData->femParts()->part(0);
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
const std::vector<float>& resultValues = m_caseData->femPartResults()->resultValues(resAddr, 0, frameIndex);
if (!resultValues.size()) return;
values->resize(m_intersections.size());// + 1); // Plus one for the end of the wellpath stopping inside a cell
for (size_t cpIdx = 0; cpIdx < m_intersections.size(); ++cpIdx)
{
size_t elmIdx = m_intersectedCells[cpIdx];
RigElementType elmType = femPart->elementType(elmIdx);
if (elmType != HEX8) continue;
cvf::StructGridInterface::FaceType cellFace = m_intersectedCellFaces[cpIdx];
int faceNodeCount = 0;
const int* faceLocalIndices = RigFemTypes::localElmNodeIndicesForFace(elmType, cellFace, &faceNodeCount);
const int* elmNodeIndices = femPart->connectivities(elmIdx);
cvf::Vec3d v0(nodeCoords[elmNodeIndices[faceLocalIndices[0]]]);
cvf::Vec3d v1(nodeCoords[elmNodeIndices[faceLocalIndices[1]]]);
cvf::Vec3d v2(nodeCoords[elmNodeIndices[faceLocalIndices[2]]]);
cvf::Vec3d v3(nodeCoords[elmNodeIndices[faceLocalIndices[3]]]);
size_t resIdx0 = cvf::UNDEFINED_SIZE_T;
size_t resIdx1 = cvf::UNDEFINED_SIZE_T;
size_t resIdx2 = cvf::UNDEFINED_SIZE_T;
size_t resIdx3 = cvf::UNDEFINED_SIZE_T;
if (resAddr.resultPosType == RIG_NODAL)
{
resIdx0 = elmNodeIndices[faceLocalIndices[0]];
resIdx1 = elmNodeIndices[faceLocalIndices[1]];
resIdx2 = elmNodeIndices[faceLocalIndices[2]];
resIdx3 = elmNodeIndices[faceLocalIndices[3]];
}
else
{
resIdx0 = (size_t)femPart->elementNodeResultIdx((int)elmIdx, faceLocalIndices[0]);
resIdx1 = (size_t)femPart->elementNodeResultIdx((int)elmIdx, faceLocalIndices[1]);
resIdx2 = (size_t)femPart->elementNodeResultIdx((int)elmIdx, faceLocalIndices[2]);
resIdx3 = (size_t)femPart->elementNodeResultIdx((int)elmIdx, faceLocalIndices[3]);
}
double interpolatedValue = cvf::GeometryTools::interpolateQuad(
v0, resultValues[resIdx0],
v1, resultValues[resIdx1],
v2, resultValues[resIdx2],
v3, resultValues[resIdx3],
m_intersections[cpIdx]
);
(*values)[cpIdx] = interpolatedValue;
}
// What do we do with the endpoint of the wellpath ?
// Ignore it for now ...
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::calculateIntersection()
{
CVF_ASSERT(m_caseData->femParts()->partCount() == 1);
const RigFemPart* femPart = m_caseData->femParts()->part(0);
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
//double globalMeasuredDepth = 0; // Where do we start ? z - of first well path point ?
for (size_t wpp = 0; wpp < m_wellPath->m_wellPathPoints.size() - 1; ++wpp)
{
cvf::BoundingBox bb;
cvf::Vec3d p1 = m_wellPath->m_wellPathPoints[wpp];
cvf::Vec3d p2 = m_wellPath->m_wellPathPoints[wpp+1];
bb.add(p1);
bb.add(p2);
std::vector<size_t> closeCells = findCloseCells(bb);
std::vector<HexIntersectionInfo> intersections;
cvf::Vec3d hexCorners[8];
for (size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx)
{
if (femPart->elementType(closeCells[ccIdx]) != HEX8) continue;
const int* cornerIndices = femPart->connectivities(closeCells[ccIdx]);
hexCorners[0] = cvf::Vec3d(nodeCoords[cornerIndices[0]]);
hexCorners[1] = cvf::Vec3d(nodeCoords[cornerIndices[1]]);
hexCorners[2] = cvf::Vec3d(nodeCoords[cornerIndices[2]]);
hexCorners[3] = cvf::Vec3d(nodeCoords[cornerIndices[3]]);
hexCorners[4] = cvf::Vec3d(nodeCoords[cornerIndices[4]]);
hexCorners[5] = cvf::Vec3d(nodeCoords[cornerIndices[5]]);
hexCorners[6] = cvf::Vec3d(nodeCoords[cornerIndices[6]]);
hexCorners[7] = cvf::Vec3d(nodeCoords[cornerIndices[7]]);
int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners, closeCells[ccIdx], &intersections);
}
// Now, with all the intersections of this piece of line, we need to
// sort them in order, and set the measured depth and corresponding cell index
// map <WellPathDepthPoint, (CellIdx, intersectionPoint)>
std::map<WellPathDepthPoint, HexIntersectionInfo > sortedIntersections;
double md1 = m_wellPath->m_measuredDepths[wpp];
double md2 = m_wellPath->m_measuredDepths[wpp+1];
for (size_t intIdx = 0; intIdx < intersections.size(); ++intIdx)
{
double lenghtAlongLineSegment1 = (intersections[intIdx].m_intersectionPoint - p1).length();
double lenghtAlongLineSegment2 = (p2 - intersections[intIdx].m_intersectionPoint).length();
double measuredDepthDiff = md2 - md1;
double lineLength = lenghtAlongLineSegment1 + lenghtAlongLineSegment2;
double measuredDepthOfPoint = 0.0;
if (lineLength > 0.00001)
{
measuredDepthOfPoint = md1 + measuredDepthDiff*lenghtAlongLineSegment1/(lineLength);
}
else
{
measuredDepthOfPoint = md1;
}
sortedIntersections.insert(std::make_pair(WellPathDepthPoint(measuredDepthOfPoint, intersections[intIdx].m_isIntersectionEntering), intersections[intIdx]));
}
// Now populate the return arrays
std::map<WellPathDepthPoint, HexIntersectionInfo >::iterator it;
it = sortedIntersections.begin();
while (it != sortedIntersections.end())
{
m_measuredDepth.push_back(it->first.measuredDepth);
m_trueVerticalDepth.push_back(it->second.m_intersectionPoint[2]);
m_intersections.push_back(it->second.m_intersectionPoint);
m_intersectedCells.push_back(it->second.m_hexIndex);
m_intersectedCellFaces.push_back(it->second.m_face);
++it;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells(const cvf::BoundingBox& bb)
{
std::vector<size_t> closeCells;
if (m_caseData->femParts()->partCount())
{
m_caseData->femParts()->part(0)->findIntersectingCells(bb, &closeCells);
}
return closeCells;
}