ResInsight/ApplicationLibCode/ProjectDataModel/Summary/RimSummaryRegressionAnalysisCurve.cpp
Magne Sjaastad 96b3bef878
Reduce memory use for summary address object
* Use one common variable for object name, use three ints
* Move enums to separate file
* Refactor use of enums
* Move implementation to cpp
* Refactor includes
2023-08-21 07:12:08 +02:00

563 lines
25 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimSummaryRegressionAnalysisCurve.h"
#include "RiaQDateTimeTools.h"
#include "RiaRegressionTextTools.h"
#include "RiaTimeTTools.h"
#include "RimSummaryPlot.h"
#include "RimTimeAxisAnnotation.h"
#include "cafPdmUiDateEditor.h"
#include "cafPdmUiLineEditor.h"
#include "cafPdmUiSliderEditor.h"
#include "cafPdmUiTextEditor.h"
#include "ExponentialRegression.hpp"
#include "LinearRegression.hpp"
#include "LogarithmicRegression.hpp"
#include "LogisticRegression.hpp"
#include "PolynomialRegression.hpp"
#include "PowerFitRegression.hpp"
#include <QDateTime>
#include <cmath>
#include <vector>
CAF_PDM_SOURCE_INIT( RimSummaryRegressionAnalysisCurve, "RegressionAnalysisCurve" );
namespace caf
{
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::RegressionType>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LINEAR, "LINEAR", "Linear" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::POLYNOMIAL, "POLYNOMIAL", "Polynomial" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::POWER_FIT, "POWER_FIT", "Power Fit" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::EXPONENTIAL, "EXPONENTIAL", "Exponential" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LOGARITHMIC, "LOGARITHMIC", "Logarithmic" );
setDefault( RimSummaryRegressionAnalysisCurve::RegressionType::LINEAR );
}
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::ForecastUnit>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::DAYS, "DAYS", "Days" );
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::MONTHS, "MONTHS", "Months" );
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS, "YEARS", "Years" );
setDefault( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS );
}
}; // namespace caf
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryRegressionAnalysisCurve::RimSummaryRegressionAnalysisCurve()
{
CAF_PDM_InitObject( "Regression Analysis Curve", ":/regression-curve.svg" );
CAF_PDM_InitFieldNoDefault( &m_regressionType, "RegressionType", "Type" );
CAF_PDM_InitField( &m_forecastForward, "ForecastForward", 0, "Forward" );
CAF_PDM_InitField( &m_forecastBackward, "ForecastBackward", 0, "Backward" );
CAF_PDM_InitFieldNoDefault( &m_forecastUnit, "ForecastUnit", "Unit" );
CAF_PDM_InitField( &m_polynomialDegree, "PolynomialDegree", 3, "Degree" );
CAF_PDM_InitFieldNoDefault( &m_minTimeStep, "MinTimeStep", "From" );
m_minTimeStep.uiCapability()->setUiEditorTypeName( caf::PdmUiSliderEditor::uiEditorTypeName() );
CAF_PDM_InitFieldNoDefault( &m_maxTimeStep, "MaxTimeStep", "To" );
m_maxTimeStep.uiCapability()->setUiEditorTypeName( caf::PdmUiSliderEditor::uiEditorTypeName() );
CAF_PDM_InitField( &m_showTimeSelectionInPlot, "ShowTimeSelectionInPlot", false, "Show In Plot" );
CAF_PDM_InitFieldNoDefault( &m_expressionText, "ExpressionText", "Expression" );
m_expressionText.uiCapability()->setUiEditorTypeName( caf::PdmUiTextEditor::uiEditorTypeName() );
m_expressionText.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
m_expressionText.uiCapability()->setUiReadOnly( true );
m_expressionText.xmlCapability()->disableIO();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryRegressionAnalysisCurve::~RimSummaryRegressionAnalysisCurve()
{
auto plot = firstAncestorOrThisOfType<RimSummaryPlot>();
if ( plot && m_timeRangeAnnotation ) plot->removeTimeAnnotation( m_timeRangeAnnotation );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::onLoadDataAndUpdate( bool updateParentPlot )
{
QString descriptionX;
std::tie( m_timeStepsX, m_valuesX, descriptionX ) = computeRegressionCurve( RimSummaryCurve::timeStepsX(), RimSummaryCurve::valuesX() );
QString descriptionY;
std::tie( m_timeStepsY, m_valuesY, descriptionY ) = computeRegressionCurve( RimSummaryCurve::timeStepsY(), RimSummaryCurve::valuesY() );
m_expressionText = descriptionY;
RimSummaryCurve::onLoadDataAndUpdate( updateParentPlot );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::valuesY() const
{
return m_valuesY;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::valuesX() const
{
return m_valuesX;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::timeStepsY() const
{
return m_timeStepsY;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::timeStepsX() const
{
return m_timeStepsX;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::tuple<std::vector<time_t>, std::vector<double>, QString>
RimSummaryRegressionAnalysisCurve::computeRegressionCurve( const std::vector<time_t>& timeSteps, const std::vector<double>& values ) const
{
if ( values.empty() || timeSteps.empty() ) return { timeSteps, values, "" };
auto [timeStepsInRange, valuesInRange] = getInRangeValues( timeSteps, values, m_minTimeStep, m_maxTimeStep );
if ( timeStepsInRange.empty() || valuesInRange.empty() ) return {};
const std::vector<double> timeStepsD = convertToDouble( timeStepsInRange );
// Create time steps which includes forecasting backward and forward
const std::vector<time_t> outputTimeSteps =
getOutputTimeSteps( timeStepsInRange, m_forecastBackward(), m_forecastForward(), m_forecastUnit() );
const std::vector<double> outputTimeStepsD = convertToDouble( outputTimeSteps );
// Move the time scale from seconds since epoch to years from first data point.
// This gives better precision for the regression analysis.
const double offset = timeStepsD[0];
auto convertToYearsFromFirstTimeStep = []( const std::vector<double>& timeSteps, double offset )
{
const double secondsPerYear = 60 * 60 * 24 * 365;
std::vector<double> timeStepsH( timeSteps.size() );
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
timeStepsH[i] = ( timeSteps[i] - offset ) / secondsPerYear;
}
return timeStepsH;
};
const std::vector<double> timeStepsDYears = convertToYearsFromFirstTimeStep( timeStepsD, offset );
const std::vector<double> outputTimeStepsDYears = convertToYearsFromFirstTimeStep( outputTimeStepsD, offset );
if ( m_regressionType == RegressionType::LINEAR )
{
regression::LinearRegression linearRegression;
linearRegression.fit( timeStepsDYears, valuesInRange );
std::vector<double> predictedValues = linearRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( linearRegression ) };
}
else if ( m_regressionType == RegressionType::POLYNOMIAL )
{
regression::PolynomialRegression polynomialRegression;
polynomialRegression.fit( timeStepsDYears, valuesInRange, m_polynomialDegree );
std::vector<double> predictedValues = polynomialRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( polynomialRegression ) };
}
else if ( m_regressionType == RegressionType::POWER_FIT )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::PowerFitRegression powerFitRegression;
powerFitRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = powerFitRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( powerFitRegression ) };
}
else if ( m_regressionType == RegressionType::EXPONENTIAL )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::ExponentialRegression exponentialRegression;
exponentialRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = exponentialRegression.predict( outputTimeStepsDYears );
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( exponentialRegression ) };
}
else if ( m_regressionType == RegressionType::LOGARITHMIC )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::LogarithmicRegression logarithmicRegression;
logarithmicRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = logarithmicRegression.predict( outputTimeStepsDYears );
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logarithmicRegression ) };
}
return { timeSteps, values, "" };
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimPlotCurve::updateFieldUiState();
caf::PdmUiGroup* regressionCurveGroup = uiOrdering.addNewGroup( "Regression Analysis" );
regressionCurveGroup->add( &m_regressionType );
if ( m_regressionType == RegressionType::POLYNOMIAL )
{
regressionCurveGroup->add( &m_polynomialDegree );
}
regressionCurveGroup->add( &m_expressionText );
caf::PdmUiGroup* timeSelectionGroup = uiOrdering.addNewGroup( "Time Selection" );
timeSelectionGroup->add( &m_minTimeStep );
timeSelectionGroup->add( &m_maxTimeStep );
timeSelectionGroup->add( &m_showTimeSelectionInPlot );
caf::PdmUiGroup* forecastingGroup = uiOrdering.addNewGroup( "Forecasting" );
forecastingGroup->add( &m_forecastForward );
forecastingGroup->add( &m_forecastBackward );
forecastingGroup->add( &m_forecastUnit );
RimSummaryCurve::defineUiOrdering( uiConfigName, uiOrdering );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::fieldChangedByUi( const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue )
{
if ( &m_minTimeStep == changedField && m_minTimeStep > m_maxTimeStep )
{
m_maxTimeStep = m_minTimeStep;
}
if ( &m_maxTimeStep == changedField && m_maxTimeStep < m_minTimeStep )
{
m_minTimeStep = m_maxTimeStep;
}
RimSummaryCurve::fieldChangedByUi( changedField, oldValue, newValue );
if ( changedField == &m_regressionType || changedField == &m_polynomialDegree || changedField == &m_forecastBackward ||
changedField == &m_forecastForward || changedField == &m_forecastUnit || changedField == &m_minTimeStep ||
changedField == &m_maxTimeStep || changedField == &m_showTimeSelectionInPlot )
{
loadAndUpdateDataAndPlot();
auto plot = firstAncestorOrThisOfTypeAsserted<RimSummaryPlot>();
if ( plot ) plot->zoomAll();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::defineEditorAttribute( const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute )
{
RimSummaryCurve::defineEditorAttribute( field, uiConfigName, attribute );
if ( field == &m_polynomialDegree )
{
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
{
// Polynomial degree should be a positive number.
lineEditorAttr->validator = new QIntValidator( 1, 50, nullptr );
}
}
else if ( field == &m_forecastForward || field == &m_forecastBackward )
{
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
{
// Block negative forecast
lineEditorAttr->validator = new QIntValidator( 0, 50, nullptr );
}
}
else if ( field == &m_minTimeStep || field == &m_maxTimeStep )
{
if ( auto* myAttr = dynamic_cast<caf::PdmUiSliderEditorAttribute*>( attribute ) )
{
auto timeSteps = RimSummaryCurve::timeStepsY();
if ( !timeSteps.empty() )
{
myAttr->m_minimum = *timeSteps.begin();
myAttr->m_maximum = *timeSteps.rbegin();
}
myAttr->m_showSpinBox = false;
}
}
else if ( field == &m_expressionText )
{
auto myAttr = dynamic_cast<caf::PdmUiTextEditorAttribute*>( attribute );
if ( myAttr )
{
myAttr->wrapMode = caf::PdmUiTextEditorAttribute::NoWrap;
myAttr->textMode = caf::PdmUiTextEditorAttribute::HTML;
QFont font;
auto pointSize = font.pointSize();
font.setPointSize( pointSize + 2 );
myAttr->font = font;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::createCurveAutoName()
{
return RimSummaryCurve::createCurveAutoName() + " " + m_regressionType().uiText() + " Regression";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::curveExportDescription( const RifEclipseSummaryAddress& address ) const
{
return RimSummaryCurve::curveExportDescription( {} ) + "." + m_regressionType().uiText() + "_Regression";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::LinearRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::PolynomialRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::PowerFitRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::ExponentialRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::LogarithmicRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::appendTimeSteps( std::vector<time_t>& destinationTimeSteps, const std::set<QDateTime>& sourceTimeSteps )
{
for ( const QDateTime& t : sourceTimeSteps )
destinationTimeSteps.push_back( RiaTimeTTools::fromQDateTime( t ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( const std::vector<time_t>& timeSteps,
int forecastBackward,
int forecastForward,
ForecastUnit forecastUnit )
{
auto getTimeSpan = []( int value, ForecastUnit unit )
{
if ( unit == ForecastUnit::YEARS ) return DateTimeSpan( value, 0, 0 );
if ( unit == ForecastUnit::MONTHS ) return DateTimeSpan( 0, value, 0 );
CAF_ASSERT( unit == ForecastUnit::DAYS );
return DateTimeSpan( 0, 0, value );
};
int numDates = 50;
std::vector<time_t> outputTimeSteps;
if ( forecastBackward > 0 )
{
QDateTime firstTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.front() );
QDateTime forecastStartTimeStep = RiaQDateTimeTools::subtractSpan( firstTimeStepInData, getTimeSpan( forecastBackward, forecastUnit ) );
auto forecastTimeSteps =
RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( forecastStartTimeStep, firstTimeStepInData, numDates );
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
}
outputTimeSteps.insert( std::end( outputTimeSteps ), std::begin( timeSteps ), std::end( timeSteps ) );
if ( forecastForward > 0 )
{
QDateTime lastTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.back() );
QDateTime forecastEndTimeStep = RiaQDateTimeTools::addSpan( lastTimeStepInData, getTimeSpan( forecastForward, forecastUnit ) );
auto forecastTimeSteps = RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( lastTimeStepInData, forecastEndTimeStep, numDates );
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
}
return outputTimeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::convertToDouble( const std::vector<time_t>& timeSteps )
{
std::vector<double> doubleVector( timeSteps.size() );
std::transform( timeSteps.begin(),
timeSteps.end(),
doubleVector.begin(),
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
return doubleVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::convertToTimeT( const std::vector<double>& timeSteps )
{
std::vector<time_t> tVector( timeSteps.size() );
std::transform( timeSteps.begin(), timeSteps.end(), tVector.begin(), []( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
return tVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<double>, std::vector<double>>
RimSummaryRegressionAnalysisCurve::getPositiveValues( const std::vector<double>& timeSteps, const std::vector<double>& values )
{
std::vector<double> filteredTimeSteps;
std::vector<double> filteredValues;
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
{
filteredTimeSteps.push_back( timeSteps[i] );
filteredValues.push_back( values[i] );
}
}
return std::make_pair( filteredTimeSteps, filteredValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<time_t>, std::vector<double>> RimSummaryRegressionAnalysisCurve::getInRangeValues( const std::vector<time_t>& timeSteps,
const std::vector<double>& values,
time_t minTimeStep,
time_t maxTimeStep )
{
CAF_ASSERT( timeSteps.size() == values.size() );
std::vector<time_t> filteredTimeSteps;
std::vector<double> filteredValues;
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
time_t timeStep = timeSteps[i];
if ( timeStep >= minTimeStep && timeStep <= maxTimeStep )
{
filteredTimeSteps.push_back( timeStep );
filteredValues.push_back( values[i] );
}
}
return std::make_pair( filteredTimeSteps, filteredValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::updateTimeAnnotations()
{
auto plot = firstAncestorOrThisOfTypeAsserted<RimSummaryPlot>();
if ( m_timeRangeAnnotation ) plot->removeTimeAnnotation( m_timeRangeAnnotation );
if ( m_showTimeSelectionInPlot && isChecked() )
{
m_timeRangeAnnotation = plot->addTimeRangeAnnotation( m_minTimeStep, m_maxTimeStep );
m_timeRangeAnnotation->setColor( color() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::updateDefaultValues()
{
auto timeSteps = RimSummaryCurve::timeStepsY();
if ( !timeSteps.empty() )
{
m_minTimeStep = timeSteps.front();
m_maxTimeStep = timeSteps.back();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::getXAxisUnitText()
{
return QString( "<br>X Axis Unit: Year" );
}