ResInsight/ApplicationCode/UnitTests/cvfGeometryTools-Test.cpp

534 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "gtest/gtest.h"
#include "cvfLibCore.h"
#include "cvfLibGeometry.h"
#include "cvfLibRender.h"
#include "cvfLibViewing.h"
#include "cvfArrayWrapperConst.h"
#include "cvfArrayWrapperToEdit.h"
#include "cvfBoundingBoxTree.h"
#include "cvfGeometryTools.h"
#include <array>
using namespace cvf;
#if 0
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void ControlVolume::calculateCubeFaceStatus(const cvf::Vec3dArray& nodeCoords, double areaTolerance)
{
int cubeFace;
cvf::uint cubeFaceIndices[4];
for (cubeFace = 0; cubeFace < 6; ++cubeFace)
{
surfaceNodeIndices(static_cast<Defines::CubeFace>(cubeFace), cubeFaceIndices);
std::vector<const brv::Connection*> conns;
connections(static_cast<Defines::CubeFace>(cubeFace), &conns);
if (!conns.size())
{
m_cubeFaceStatus[cubeFace] = FREE_FACE;
}
else
{
double area = 0.5 * (nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[0]] ^ nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[0]]).length();
area += 0.5 * (nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[2]] ^ nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[2]]).length();
double totConnectionArea = 0;
size_t i;
for (i = 0; i < conns.size(); ++i)
{
totConnectionArea += conns[i]->brfArea();
}
if ( totConnectionArea < area - areaTolerance )
{
m_cubeFaceStatus[cubeFace] = PARTIALLY_COVERED;
}
else
{
m_cubeFaceStatus[cubeFace] = COMPLETELY_COVERED;
}
}
// Create a polygon to store the complete polygon of the faces
// not completely covered by connections
// This polygon will be filled with nodes later
if (m_cubeFaceStatus[cubeFace] != COMPLETELY_COVERED )
{
m_freeFacePolygons[cubeFace] = new std::list<std::pair<cvf::uint, bool> >;
}
}
}
#endif
template<typename NodeArrayType, typename NodeType, typename IndexType>
NodeType quadNormal(ArrayWrapperConst<NodeArrayType, NodeType> nodeCoords, const IndexType cubeFaceIndices[4])
{
return (nodeCoords[cubeFaceIndices[2]] - nodeCoords[cubeFaceIndices[0]]) ^
(nodeCoords[cubeFaceIndices[3]] - nodeCoords[cubeFaceIndices[1]]);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> createVertices()
{
std::vector<cvf::Vec3d> vxs;
vxs.resize(14, cvf::Vec3d::ZERO);
// clang-format off
vxs[ 0]= cvf::Vec3d( 0 , 0 , 0 );
vxs[ 1]= cvf::Vec3d( 1 , 0 , 0 );
vxs[ 2]= cvf::Vec3d( 1 , 1 , 0 );
vxs[ 3]= cvf::Vec3d( 0 , 1 , 0 );
vxs[ 4]= cvf::Vec3d(-0.4 ,-0.2 , 0.0 );
vxs[ 5]= cvf::Vec3d( 0.4 , 0.6 , 0.0 );
vxs[ 6]= cvf::Vec3d( 0.8 , 0.2 , 0.0 );
vxs[ 7]= cvf::Vec3d( 0.0 ,-0.6 , 0.0 );
vxs[ 8]= cvf::Vec3d( 1.0 , 1.2 , 0.0 );
vxs[ 9]= cvf::Vec3d( 1.4 , 0.8 , 0.0 );
vxs[10]= cvf::Vec3d( 0.4 ,-0.2 , 0.0 );
vxs[11]= cvf::Vec3d( 1.2 , 0.6 , 0.0 );
vxs[12]= cvf::Vec3d( 1.6 , 0.2 , 0.0 );
vxs[13]= cvf::Vec3d( 0.8 ,-0.6 , 0.0 );
// clang-format on
return vxs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::array<cvf::uint, 4>> getCubeFaces()
{
std::vector<std::array<cvf::uint, 4>> cubeFaces;
cubeFaces.resize(4);
cubeFaces[0] = {0, 1, 2, 3};
cubeFaces[1] = {4, 5, 6, 7};
cubeFaces[2] = {5, 8, 9, 6};
cubeFaces[3] = {10, 11, 12, 13};
return cubeFaces;
}
std::ostream& operator<<(std::ostream& stream, std::vector<cvf::uint> v)
{
for (size_t i = 0; i < v.size(); ++i)
{
stream << v[i] << " ";
}
return stream;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, Intersection1)
{
std::vector<cvf::Vec3d> nodes = createVertices();
std::vector<cvf::Vec3d> additionalVertices;
std::vector<std::vector<cvf::uint>> overlapPolygons;
auto faces = getCubeFaces();
EdgeIntersectStorage<cvf::uint> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount(nodes.size());
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
faces[0].data(),
faces[1].data(),
1e-6);
EXPECT_EQ((size_t)5, polygon.size());
EXPECT_EQ((size_t)2, additionalVertices.size());
EXPECT_TRUE(isOk);
overlapPolygons.push_back(polygon);
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
faces[0].data(),
faces[2].data(),
1e-6);
EXPECT_EQ((size_t)5, polygon.size());
EXPECT_EQ((size_t)4, additionalVertices.size());
EXPECT_TRUE(isOk);
overlapPolygons.push_back(polygon);
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
faces[0].data(),
faces[3].data(),
1e-6);
EXPECT_EQ((size_t)3, polygon.size());
EXPECT_EQ((size_t)6, additionalVertices.size());
EXPECT_TRUE(isOk);
overlapPolygons.push_back(polygon);
std::cout << polygon << std::endl;
}
nodes.insert(nodes.end(), additionalVertices.begin(), additionalVertices.end());
std::vector<cvf::uint> basePolygon;
basePolygon.insert(basePolygon.begin(), faces[0].data(), &(faces[0].data()[4]));
for (cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx)
{
GeometryTools::insertVertexInPolygon(&basePolygon, wrapArrayConst(&nodes), vxIdx, 1e-6);
}
EXPECT_EQ((size_t)8, basePolygon.size());
std::cout << "Bp: " << basePolygon << std::endl;
for (size_t pIdx = 0; pIdx < overlapPolygons.size(); ++pIdx)
{
for (cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx)
{
GeometryTools::insertVertexInPolygon(&overlapPolygons[pIdx], wrapArrayConst(&nodes), vxIdx, 1e-6);
}
if (pIdx == 0)
{
EXPECT_EQ((size_t)5, overlapPolygons[pIdx].size());
}
if (pIdx == 1)
{
EXPECT_EQ((size_t)5, overlapPolygons[pIdx].size());
}
if (pIdx == 2)
{
EXPECT_EQ((size_t)4, overlapPolygons[pIdx].size());
}
std::cout << "Op" << pIdx << ":" << overlapPolygons[pIdx] << std::endl;
}
Vec3d normal = quadNormal(wrapArrayConst(&nodes), faces[0].data());
std::vector<bool> faceOverlapPolygonWindingSameAsCubeFaceFlags;
faceOverlapPolygonWindingSameAsCubeFaceFlags.resize(overlapPolygons.size(), true);
{
std::vector<cvf::uint> freeFacePolygon;
bool hasHoles = false;
std::vector<std::vector<cvf::uint>*> overlapPolygonPtrs;
for (size_t pIdx = 0; pIdx < overlapPolygons.size(); ++pIdx)
{
overlapPolygonPtrs.push_back(&(overlapPolygons[pIdx]));
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(&basePolygon),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles);
EXPECT_EQ((size_t)4, freeFacePolygon.size());
EXPECT_FALSE(hasHoles);
std::cout << "FF1: " << freeFacePolygon << std::endl;
}
{
std::vector<cvf::uint> freeFacePolygon;
bool hasHoles = false;
std::vector<std::vector<cvf::uint>*> overlapPolygonPtrs;
for (size_t pIdx = 0; pIdx < 1; ++pIdx)
{
overlapPolygonPtrs.push_back(&(overlapPolygons[pIdx]));
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(&basePolygon),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles);
EXPECT_EQ((size_t)9, freeFacePolygon.size());
EXPECT_FALSE(hasHoles);
std::cout << "FF2: " << freeFacePolygon << std::endl;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, Intersection)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
nodes.resize(8);
nodes.setAll(cvf::Vec3d(0, 0, 0));
EdgeIntersectStorage<size_t> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount(nodes.size());
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0, 0, 0);
nodes[5] = cvf::Vec3d(1, 0, 0);
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)4, polygon.size());
EXPECT_EQ((size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0.5, -0.25, 0);
nodes[5] = cvf::Vec3d(1.25, 0.5, 0);
nodes[6] = cvf::Vec3d(0.5, 1.25, 0);
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)8, polygon.size());
EXPECT_EQ((size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, FreeFacePolygon)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
nodes.resize(8);
nodes.setAll(cvf::Vec3d(0, 0, 0));
EdgeIntersectStorage<size_t> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount(nodes.size());
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0, 0, 0);
nodes[5] = cvf::Vec3d(1, 0, 0);
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)4, polygon.size());
EXPECT_EQ((size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
std::vector<bool> faceOverlapPolygonWinding;
std::vector<std::vector<size_t>*> faceOverlapPolygons;
faceOverlapPolygons.push_back(&polygon);
faceOverlapPolygonWinding.push_back(true);
std::vector<size_t> partialFacePolygon;
bool hasHoles = false;
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(cv1CubeFaceIndices, 4),
Vec3d(0, 0, 1),
faceOverlapPolygons,
faceOverlapPolygonWinding,
&partialFacePolygon,
&hasHoles);
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0.5, -0.25, 0);
nodes[5] = cvf::Vec3d(1.25, 0.5, 0);
nodes[6] = cvf::Vec3d(0.5, 1.25, 0);
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)8, polygon.size());
EXPECT_EQ((size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, PolygonAreaNormal3D)
{
// Test special cases with zero area
{
std::vector<cvf::Vec3d> vxs;
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
// Three points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-0.5, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
// four identical points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
// Square of four points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
vxs.push_back({0, 1, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-1.0, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
// Square of four points + one point in center of square
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
vxs.push_back({0, 1, 0});
vxs.push_back({0, 0.5, 0.5}); // center of square
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-0.75, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
}