ResInsight/ApplicationLibCode/ProjectDataModel/WellLog/RimWellLogExtractionCurve.cpp
2023-05-31 12:49:01 +02:00

1454 lines
61 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimWellLogExtractionCurve.h"
#include "RiaColorTables.h"
#include "RiaLogging.h"
#include "RiaResultNames.h"
#include "RiaSimWellBranchTools.h"
#include "RiaWellLogUnitTools.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigEclipseWellLogExtractor.h"
#include "RigFemPartResultsCollection.h"
#include "RigGeoMechCaseData.h"
#include "RigGeoMechWellLogExtractor.h"
#include "RigResultAccessorFactory.h"
#include "RigSimWellData.h"
#include "RigSimulationWellCenterLineCalculator.h"
#include "RigSimulationWellCoordsAndMD.h"
#include "RigWellLogCurveData.h"
#include "RigWellLogIndexDepthOffset.h"
#include "RigWellPath.h"
#include "RimEclipseCase.h"
#include "RimEclipseCellColors.h"
#include "RimEclipseResultDefinition.h"
#include "RimEclipseView.h"
#include "RimGeoMechCase.h"
#include "RimGeoMechResultDefinition.h"
#include "RimGeoMechView.h"
#include "RimMainPlotCollection.h"
#include "RimTools.h"
#include "RimWellBoreStabilityPlot.h"
#include "RimWellLogCurve.h"
#include "RimWellLogCurveCommonDataSource.h"
#include "RimWellLogFile.h"
#include "RimWellLogFileChannel.h"
#include "RimWellLogPlot.h"
#include "RimWellLogPlotCollection.h"
#include "RimWellLogTrack.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RimWellPlotTools.h"
#include "RiuPlotMainWindowTools.h"
#include "RiuQwtPlotCurve.h"
#include "RiuQwtPlotWidget.h"
#include "cafPdmFieldScriptingCapability.h"
#include "cafPdmObjectScriptingCapability.h"
#include "cafPdmUiTreeOrdering.h"
#include "cafUtils.h"
#include <algorithm>
#include <cmath>
//==================================================================================================
///
///
//==================================================================================================
CAF_PDM_SOURCE_INIT( RimWellLogExtractionCurve, "WellLogExtractionCurve", "RimWellLogExtractionCurve" );
namespace caf
{
template <>
void AppEnum<RimWellLogExtractionCurve::TrajectoryType>::setUp()
{
addItem( RimWellLogExtractionCurve::WELL_PATH, "WELL_PATH", "Well Path" );
addItem( RimWellLogExtractionCurve::SIMULATION_WELL, "SIMULATION_WELL", "Simulation Well" );
setDefault( RimWellLogExtractionCurve::WELL_PATH );
}
} // namespace caf
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogExtractionCurve::RimWellLogExtractionCurve()
{
CAF_PDM_InitScriptableObject( "Well Log Curve", RimWellLogCurve::wellLogCurveIconName() );
CAF_PDM_InitFieldNoDefault( &m_trajectoryType, "TrajectoryType", "Trajectory Type" );
CAF_PDM_InitFieldNoDefault( &m_wellPath, "CurveWellPath", "Well Name" );
m_wellPath.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_refWellPath, "ReferenceWellPath", "Reference Well Path" );
CAF_PDM_InitField( &m_simWellName, "SimulationWellName", QString( "" ), "Well Name" );
CAF_PDM_InitField( &m_branchDetection,
"BranchDetection",
true,
"Branch Detection",
"",
"Compute branches based on how simulation well cells are organized",
"" );
CAF_PDM_InitField( &m_branchIndex, "Branch", 0, "Branch Index" );
CAF_PDM_InitFieldNoDefault( &m_case, "CurveCase", "Case" );
m_case.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_eclipseResultDefinition, "CurveEclipseResult", "" );
m_eclipseResultDefinition.uiCapability()->setUiTreeHidden( true );
m_eclipseResultDefinition.uiCapability()->setUiTreeChildrenHidden( true );
m_eclipseResultDefinition = new RimEclipseResultDefinition;
m_eclipseResultDefinition->findField( "MResultType" )->uiCapability()->setUiName( "Result Type" );
CAF_PDM_InitFieldNoDefault( &m_geomResultDefinition, "CurveGeomechResult", "" );
m_geomResultDefinition.uiCapability()->setUiTreeHidden( true );
m_geomResultDefinition.uiCapability()->setUiTreeChildrenHidden( true );
m_geomResultDefinition = new RimGeoMechResultDefinition;
m_geomResultDefinition->setAddWellPathDerivedResults( true );
CAF_PDM_InitField( &m_timeStep, "CurveTimeStep", 0, "Time Step" );
CAF_PDM_InitField( &m_geomPartId, "GeomPartId", 0, "Part Id" );
// Add some space before name to indicate these belong to the Auto Name field
CAF_PDM_InitField( &m_addCaseNameToCurveName, "AddCaseNameToCurveName", true, " Case Name" );
CAF_PDM_InitField( &m_addPropertyToCurveName, "AddPropertyToCurveName", true, " Property" );
CAF_PDM_InitField( &m_addWellNameToCurveName, "AddWellNameToCurveName", true, " Well Name" );
CAF_PDM_InitField( &m_addTimestepToCurveName, "AddTimestepToCurveName", false, " Timestep" );
CAF_PDM_InitField( &m_addDateToCurveName, "AddDateToCurveName", true, " Date" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogExtractionCurve::~RimWellLogExtractionCurve()
{
clearGeneratedSimWellPaths();
delete m_geomResultDefinition;
delete m_eclipseResultDefinition;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setWellPath( RimWellPath* wellPath )
{
m_wellPath = wellPath;
if ( m_wellPath() == m_refWellPath() ) m_refWellPath = nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellPath* RimWellLogExtractionCurve::wellPath() const
{
return m_wellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setFromSimulationWellName( const QString& simWellName, int branchIndex, bool branchDetection )
{
m_trajectoryType = SIMULATION_WELL;
m_simWellName = simWellName;
m_branchIndex = branchIndex;
m_branchDetection = branchDetection;
clearGeneratedSimWellPaths();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setCase( RimCase* rimCase )
{
m_case = rimCase;
connectCaseSignals( rimCase );
clearGeneratedSimWellPaths();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimCase* RimWellLogExtractionCurve::rimCase() const
{
return m_case;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setPropertiesFromView( Rim3dView* view )
{
if ( view )
{
m_case = view->ownerCase();
connectCaseSignals( m_case );
}
RimGeoMechCase* geomCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
m_eclipseResultDefinition->setEclipseCase( eclipseCase );
m_geomResultDefinition->setGeoMechCase( geomCase );
RimEclipseView* eclipseView = dynamic_cast<RimEclipseView*>( view );
if ( eclipseView )
{
m_eclipseResultDefinition->simpleCopy( eclipseView->cellResult() );
m_timeStep = eclipseView->currentTimeStep();
}
else if ( eclipseCase )
{
m_eclipseResultDefinition->setResultType( RiaDefines::ResultCatType::STATIC_NATIVE );
m_eclipseResultDefinition->setResultVariable( "PORO" );
}
RimGeoMechView* geoMechView = dynamic_cast<RimGeoMechView*>( view );
if ( geoMechView )
{
m_geomResultDefinition->setResultAddress( geoMechView->cellResultResultDefinition()->resultAddress() );
m_geomResultDefinition->setNormalizationAirGap( geoMechView->cellResultResultDefinition()->normalizationAirGap() );
m_timeStep = geoMechView->currentTimeStep();
}
else if ( geomCase )
{
m_geomResultDefinition->setResultAddress( RigFemResultAddress( RIG_ELEMENT_NODAL, "ST", "S33" ) );
}
clearGeneratedSimWellPaths();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogExtractionCurve::TrajectoryType RimWellLogExtractionCurve::trajectoryType() const
{
return m_trajectoryType();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::clampTimestep()
{
if ( m_timeStep > 0 && m_case )
{
if ( m_timeStep > m_case->timeStepStrings().size() - 1 )
{
m_timeStep = m_case->timeStepStrings().size() - 1;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::clampBranchIndex()
{
int branchCount = static_cast<int>( RiaSimWellBranchTools::simulationWellBranches( m_simWellName, m_branchDetection ).size() );
if ( branchCount > 0 )
{
if ( m_branchIndex >= branchCount )
m_branchIndex = branchCount - 1;
else if ( m_branchIndex < 0 )
m_branchIndex = 0;
}
else
{
m_branchIndex = -1;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::fieldChangedByUi( const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue )
{
RimWellLogCurve::fieldChangedByUi( changedField, oldValue, newValue );
if ( changedField == &m_case )
{
clampTimestep();
auto wellNameSet = sortedSimWellNames();
if ( !wellNameSet.count( m_simWellName() ) ) m_simWellName = "";
clearGeneratedSimWellPaths();
this->loadDataAndUpdate( true );
}
else if ( changedField == &m_wellPath )
{
if ( m_wellPath() == m_refWellPath() ) m_refWellPath = nullptr;
this->loadDataAndUpdate( true );
}
else if ( ( changedField == &m_refWellPath ) || ( changedField == &m_timeStep ) || ( changedField == &m_trajectoryType ) ||
( changedField == &m_geomPartId ) )
{
this->loadDataAndUpdate( true );
}
else if ( ( changedField == &m_branchDetection ) || ( changedField == &m_branchIndex ) || ( changedField == &m_simWellName ) )
{
clearGeneratedSimWellPaths();
this->loadDataAndUpdate( true );
}
if ( changedField == &m_addCaseNameToCurveName || changedField == &m_addPropertyToCurveName ||
changedField == &m_addWellNameToCurveName || changedField == &m_addTimestepToCurveName || changedField == &m_addDateToCurveName )
{
this->uiCapability()->updateConnectedEditors();
updateCurveNameAndUpdatePlotLegendAndTitle();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::onLoadDataAndUpdate( bool updateParentPlot )
{
if ( isChecked() )
{
bool isUsingPseudoLength = false;
performDataExtraction( &isUsingPseudoLength );
if ( m_plotCurve )
{
bool isUsingPseudoLength = false;
performDataExtraction( &isUsingPseudoLength );
RimDepthTrackPlot* wellLogPlot = firstAncestorOrThisOfType<RimDepthTrackPlot>();
if ( !wellLogPlot ) return;
RiaDefines::DepthTypeEnum depthType = wellLogPlot->depthType();
RiaDefines::DepthUnitType displayUnit = wellLogPlot->depthUnit();
if ( depthType == RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH || depthType == RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH_RKB )
{
isUsingPseudoLength = false;
}
bool useLogarithmicScale = false;
auto track = firstAncestorOfType<RimWellLogTrack>();
if ( track )
{
useLogarithmicScale = track->isLogarithmicScale();
}
std::vector<double> xPlotValues = curveData()->propertyValuesByIntervals();
std::vector<double> depthPlotValues = curveData()->depthValuesByIntervals( depthType, displayUnit );
CAF_ASSERT( xPlotValues.size() == depthPlotValues.size() );
if ( wellLogPlot->depthOrientation() == RiaDefines::Orientation::HORIZONTAL )
m_plotCurve->setSamplesFromXValuesAndYValues( depthPlotValues, xPlotValues, useLogarithmicScale );
else
m_plotCurve->setSamplesFromXValuesAndYValues( xPlotValues, depthPlotValues, useLogarithmicScale );
m_plotCurve->setLineSegmentStartStopIndices( curveData()->polylineStartStopIndices() );
this->RimPlotCurve::updateCurvePresentation( updateParentPlot );
if ( isUsingPseudoLength )
{
RimWellLogTrack* wellLogTrack = firstAncestorOrThisOfTypeAsserted<RimWellLogTrack>();
RiuQwtPlotWidget* viewer = wellLogTrack->viewer();
if ( viewer )
{
viewer->setAxisTitleText( wellLogPlot->depthAxis(), "PL/" + wellLogPlot->depthAxisTitle() );
}
}
if ( updateParentPlot )
{
updateZoomInParentPlot();
}
setLogScaleFromSelectedResult();
if ( m_parentPlot )
{
m_parentPlot->replot();
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::performDataExtraction( bool* isUsingPseudoLength )
{
if ( dynamic_cast<RimGeoMechCase*>( m_case.value() ) && ( m_geomResultDefinition->resultPositionType() == RIG_WELLPATH_DERIVED ) &&
( m_geomResultDefinition->resultFieldName() == "UCS" ) )
{
RimWellBoreStabilityPlot* wbsPlot = firstAncestorOrThisOfType<RimWellBoreStabilityPlot>();
if ( wbsPlot )
{
auto maxCurvePointInterval = wbsPlot->commonDataSource()->maximumCurvePointInterval();
if ( maxCurvePointInterval.first )
{
double maxIntervalLength = maxCurvePointInterval.second;
// Special handling for a UCS parameter curve as this curve also depends on UCS that can be defined in a LAS file with
// high resolution. The maximum curve interval was designed to only be used by RimWellLogWbsCurve. To be able to use
// this functionality for a wellpath UCS curve, we get the maximumCurvePointInterval directly. It is not possible to
// control this setting locally on the curve object, the value is always taken directly from the WBS plot settings.
extractData( isUsingPseudoLength, {}, maxIntervalLength );
return;
}
}
}
extractData( isUsingPseudoLength, {}, {} );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::extractData( bool* isUsingPseudoLength,
const std::optional<double>& smoothingThreshold,
const std::optional<double>& maxDistanceBetweenCurvePoints )
{
CAF_ASSERT( isUsingPseudoLength );
// Make sure we have set correct case data into the result definitions.
RimGeoMechCase* geomCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
m_eclipseResultDefinition->setEclipseCase( eclipseCase );
m_geomResultDefinition->setGeoMechCase( geomCase );
clampBranchIndex();
WellLogExtractionCurveData curveData;
if ( eclipseCase )
{
curveData = extractEclipseData( eclipseCase, isUsingPseudoLength );
}
else if ( geomCase && geomCase->geoMechData() )
{
curveData = extractGeomData( geomCase, isUsingPseudoLength, smoothingThreshold, maxDistanceBetweenCurvePoints );
}
if ( !curveData.values.empty() && !curveData.measuredDepthValues.empty() )
{
bool useLogarithmicScale = false;
bool performDataSmoothing = smoothingThreshold.has_value();
auto track = firstAncestorOfType<RimWellLogTrack>();
if ( track )
{
useLogarithmicScale = track->isLogarithmicScale();
}
if ( curveData.tvDepthValues.empty() )
{
this->setPropertyValuesAndDepths( curveData.values,
curveData.measuredDepthValues,
RiaDefines::DepthTypeEnum::MEASURED_DEPTH,
0.0,
curveData.depthUnit,
!performDataSmoothing,
useLogarithmicScale,
curveData.xUnits );
}
else
{
this->setPropertyValuesWithMdAndTVD( curveData.values,
curveData.measuredDepthValues,
curveData.tvDepthValues,
curveData.rkbDiff,
curveData.depthUnit,
!performDataSmoothing,
useLogarithmicScale,
curveData.xUnits );
}
}
else
{
clearCurveData();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogExtractionCurve::WellLogExtractionCurveData RimWellLogExtractionCurve::extractEclipseData( RimEclipseCase* eclipseCase,
bool* isUsingPseudoLength )
{
WellLogExtractionCurveData curveData;
RimWellLogPlotCollection* wellLogCollection = RimMainPlotCollection::current()->wellLogPlotCollection();
cvf::ref<RigEclipseWellLogExtractor> wellExtractor;
cvf::ref<RigEclipseWellLogExtractor> refWellExtractor;
cvf::ref<RigResultAccessor> resAcc;
if ( m_trajectoryType == WELL_PATH )
{
wellExtractor = wellLogCollection->findOrCreateExtractor( m_wellPath, eclipseCase );
refWellExtractor = wellLogCollection->findOrCreateExtractor( m_refWellPath, eclipseCase );
}
else
{
std::vector<const RigWellPath*> simWellBranches = RiaSimWellBranchTools::simulationWellBranches( m_simWellName, m_branchDetection );
if ( m_branchIndex >= 0 && m_branchIndex < static_cast<int>( simWellBranches.size() ) )
{
auto wellBranch = simWellBranches[m_branchIndex];
wellExtractor = wellLogCollection->findOrCreateSimWellExtractor( m_simWellName,
eclipseCase->caseUserDescription(),
wellBranch,
eclipseCase->eclipseCaseData() );
if ( wellExtractor.notNull() )
{
m_wellPathsWithExtractors.push_back( wellBranch );
}
*isUsingPseudoLength = true;
}
}
if ( wellExtractor.notNull() )
{
curveData.measuredDepthValues = wellExtractor->cellIntersectionMDs();
curveData.tvDepthValues = wellExtractor->cellIntersectionTVDs();
curveData.rkbDiff = wellExtractor->wellPathGeometry()->rkbDiff();
m_eclipseResultDefinition->loadResult();
resAcc =
RigResultAccessorFactory::createFromResultDefinition( eclipseCase->eclipseCaseData(), 0, m_timeStep, m_eclipseResultDefinition );
if ( resAcc.notNull() )
{
wellExtractor->curveData( resAcc.p(), &curveData.values );
}
RiaDefines::EclipseUnitSystem eclipseUnitsType = eclipseCase->eclipseCaseData()->unitsType();
if ( eclipseUnitsType == RiaDefines::EclipseUnitSystem::UNITS_FIELD )
{
// See https://github.com/OPM/ResInsight/issues/538
curveData.depthUnit = RiaDefines::DepthUnitType::UNIT_FEET;
}
}
// Reference well adjustment does not support simulated wells
if ( m_trajectoryType == WELL_PATH && wellExtractor.notNull() && refWellExtractor.notNull() )
{
RigEclipseResultAddress indexKResAdr( RiaDefines::ResultCatType::STATIC_NATIVE, RiaResultNames::indexKResultName() );
eclipseCase->eclipseCaseData()->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->ensureKnownResultLoaded( indexKResAdr );
cvf::ref<RigResultAccessor> indexKResAcc =
RigResultAccessorFactory::createFromResultAddress( eclipseCase->eclipseCaseData(),
0,
RiaDefines::PorosityModelType::MATRIX_MODEL,
m_timeStep,
indexKResAdr );
std::vector<double> refWellMeasuredDepthValues = refWellExtractor->cellIntersectionMDs();
std::vector<double> refWellTvDepthValues = refWellExtractor->cellIntersectionTVDs();
std::vector<double> refWellPropertyValues;
std::vector<double> wellIndexKValues;
std::vector<double> refWellIndexKValues;
if ( indexKResAcc.notNull() )
{
wellExtractor->curveData( indexKResAcc.p(), &wellIndexKValues );
refWellExtractor->curveData( indexKResAcc.p(), &refWellIndexKValues );
}
if ( resAcc.notNull() )
{
refWellExtractor->curveData( resAcc.p(), &refWellPropertyValues );
}
if ( !wellIndexKValues.empty() && !refWellIndexKValues.empty() && !refWellPropertyValues.empty() )
{
mapPropertyValuesFromReferenceWell( curveData.measuredDepthValues,
curveData.tvDepthValues,
curveData.values,
wellIndexKValues,
refWellMeasuredDepthValues,
refWellTvDepthValues,
refWellPropertyValues,
refWellIndexKValues );
}
}
return curveData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogExtractionCurve::WellLogExtractionCurveData
RimWellLogExtractionCurve::extractGeomData( RimGeoMechCase* geoMechCase,
bool* isUsingPseudoLength,
const std::optional<double>& smoothingThreshold,
const std::optional<double>& maxDistanceBetweenCurvePoints )
{
WellLogExtractionCurveData curveData;
RimWellLogPlotCollection* wellLogCollection = RimMainPlotCollection::current()->wellLogPlotCollection();
cvf::ref<RigGeoMechWellLogExtractor> wellExtractor;
if ( maxDistanceBetweenCurvePoints.has_value() && maxDistanceBetweenCurvePoints.value() > 0.0 )
{
RigGeoMechCaseData* caseData = geoMechCase->geoMechData();
auto wellPathGeometry = m_wellPath->wellPathGeometry();
if ( caseData && wellPathGeometry )
{
std::string errorIdName = ( m_wellPath->name() + " " + geoMechCase->caseUserDescription() ).toStdString();
wellExtractor = new RigGeoMechWellLogExtractor( caseData, m_geomPartId, wellPathGeometry, errorIdName );
if ( wellExtractor->valid() )
{
// make sure the resampling of the well path is done before the extraction of the curve data
wellExtractor->resampleIntersections( maxDistanceBetweenCurvePoints.value() );
}
else
{
return curveData;
}
}
}
else
{
wellExtractor = wellLogCollection->findOrCreateExtractor( m_wellPath, geoMechCase, m_geomPartId );
}
cvf::ref<RigGeoMechWellLogExtractor> refWellExtractor =
wellLogCollection->findOrCreateExtractor( m_refWellPath, geoMechCase, m_geomPartId );
auto [timeStepIdx, frameIdx] = geoMechCase->geoMechData()->femPartResults()->stepListIndexToTimeStepAndDataFrameIndex( m_timeStep );
if ( wellExtractor.notNull() )
{
curveData.measuredDepthValues = wellExtractor->cellIntersectionMDs();
curveData.tvDepthValues = wellExtractor->cellIntersectionTVDs();
curveData.rkbDiff = wellExtractor->wellPathGeometry()->rkbDiff();
if ( curveData.measuredDepthValues.empty() )
{
return curveData;
}
findAndLoadWbsParametersFromLasFiles( m_wellPath(), wellExtractor.p() );
RimWellBoreStabilityPlot* wbsPlot = firstAncestorOrThisOfType<RimWellBoreStabilityPlot>();
if ( wbsPlot )
{
wbsPlot->applyWbsParametersToExtractor( wellExtractor.p() );
}
m_geomResultDefinition->loadResult();
curveData.xUnits = wellExtractor->curveData( m_geomResultDefinition->resultAddress(), timeStepIdx, frameIdx, &curveData.values );
}
// Do not adjust depth values of Azimuth and Inclination as they are dependent
// of the well geometry
const std::string fieldName = m_geomResultDefinition->resultAddress().fieldName;
const bool isNeglectedFieldName = fieldName == RiaResultNames::wbsAzimuthResult().toStdString() ||
fieldName == RiaResultNames::wbsInclinationResult().toStdString();
if ( !isNeglectedFieldName && wellExtractor.notNull() && refWellExtractor.notNull() )
{
RigFemResultAddress indexKResAdr( RigFemResultPosEnum::RIG_ELEMENT_NODAL, "INDEX", "INDEX_K" );
std::vector<double> refWellMeasuredDepthValues = refWellExtractor->cellIntersectionMDs();
std::vector<double> refWellTvDepthValues = refWellExtractor->cellIntersectionTVDs();
std::vector<double> refWellPropertyValues;
std::vector<double> refWellIndexKValues;
std::vector<double> wellIndexKValues;
if ( indexKResAdr.isValid() )
{
wellExtractor->curveData( indexKResAdr, timeStepIdx, frameIdx, &wellIndexKValues );
refWellExtractor->curveData( indexKResAdr, timeStepIdx, frameIdx, &refWellIndexKValues );
refWellExtractor->curveData( m_geomResultDefinition->resultAddress(), timeStepIdx, frameIdx, &refWellPropertyValues );
}
if ( !wellIndexKValues.empty() && !refWellIndexKValues.empty() && !refWellPropertyValues.empty() )
{
mapPropertyValuesFromReferenceWell( curveData.measuredDepthValues,
curveData.tvDepthValues,
curveData.values,
wellIndexKValues,
refWellMeasuredDepthValues,
refWellTvDepthValues,
refWellPropertyValues,
refWellIndexKValues );
}
if ( smoothingThreshold.has_value() )
{
refWellExtractor->performCurveDataSmoothing( timeStepIdx,
frameIdx,
&curveData.measuredDepthValues,
&curveData.tvDepthValues,
&curveData.values,
smoothingThreshold.value() );
}
return curveData;
}
if ( wellExtractor.notNull() && smoothingThreshold.has_value() )
{
wellExtractor->performCurveDataSmoothing( timeStepIdx,
frameIdx,
&curveData.measuredDepthValues,
&curveData.tvDepthValues,
&curveData.values,
smoothingThreshold.value() );
}
return curveData;
}
//--------------------------------------------------------------------------------------------------
/// Utility function to map property values of reference well into curve of selected well, by
/// retrieving the property values and map to corresponding depth values by usage of k-layer index.
/// Match enter and exit values for k-layer and linearize for depth values between enter/exit of k-layer.
///
/// Performs value mapping from first common k-layer to last common k-layer - i.e common min and
/// max index-k, as long as the k-layers are asymptotically increasing.
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::mapPropertyValuesFromReferenceWell( std::vector<double>& rMeasuredDepthValues,
std::vector<double>& rTvDepthValues,
std::vector<double>& rPropertyValues,
const std::vector<double>& indexKValues,
const std::vector<double>& refWellMeasuredDepthValues,
const std::vector<double>& refWellTvDepthValues,
const std::vector<double>& refWellPropertyValues,
const std::vector<double>& refWellIndexKValues )
{
// TODO: Add asserts and checks
CAF_ASSERT( rMeasuredDepthValues.size() == rTvDepthValues.size() && "Number of depth values must be equal for well!" );
CAF_ASSERT( rMeasuredDepthValues.size() == rPropertyValues.size() &&
"Number of property values must be equal number of depth values for well!" );
CAF_ASSERT( rMeasuredDepthValues.size() == indexKValues.size() &&
"Number of index K values must be equal number of depth values for well!" );
CAF_ASSERT( refWellMeasuredDepthValues.size() == refWellTvDepthValues.size() &&
"Number of depth values must be equal for reference well!" );
CAF_ASSERT( refWellMeasuredDepthValues.size() == refWellPropertyValues.size() &&
"Number of property values must be equal number of depth values for reference well!" );
CAF_ASSERT( refWellMeasuredDepthValues.size() == refWellIndexKValues.size() &&
"Number of index K values must be equal number of depth values for reference well!" );
CAF_ASSERT( *std::min( indexKValues.cbegin(), indexKValues.cend() ) ==
*std::min( refWellIndexKValues.cbegin(), refWellIndexKValues.cend() ) &&
"Both index-K value vectors must contain common min index-K layer" );
// Find common min and max k-index value for range of depth values to adjust
const auto minLayerK = static_cast<int>( std::max( *std::min_element( refWellIndexKValues.cbegin(), refWellIndexKValues.cend() ),
*std::min_element( indexKValues.cbegin(), indexKValues.cend() ) ) );
const auto maxLayerK = static_cast<int>( std::min( *std::max_element( refWellIndexKValues.cbegin(), refWellIndexKValues.cend() ),
*std::max_element( indexKValues.cbegin(), indexKValues.cend() ) ) );
if ( minLayerK > maxLayerK )
{
RiaLogging::error( QString( "Invalid K layers found. Minimum: %1 > Maximum : %2" ).arg( minLayerK ).arg( maxLayerK ) );
return;
}
// Only allow asymptotically increasing k-layers - break at first decreasing k-layer value
auto createKLayerAndIndexMap = []( const std::vector<double>& indexKValues, int minLayerK, int maxLayerK )
{
int prevKLayer = -1;
std::map<int, std::vector<size_t>> kLayerAndIndexesMap = {};
for ( size_t i = 0; i < indexKValues.size(); ++i )
{
const auto kLayer = static_cast<int>( indexKValues[i] );
if ( kLayer < minLayerK ) continue;
if ( kLayer < prevKLayer || kLayer > maxLayerK ) break;
kLayerAndIndexesMap[kLayer].push_back( i );
prevKLayer = kLayer;
}
return kLayerAndIndexesMap;
};
RigWellLogIndexDepthOffset wellLogIndexDepthOffset;
std::map<int, std::vector<size_t>> wellKLayerAndIndexesMap = createKLayerAndIndexMap( indexKValues, minLayerK, maxLayerK );
for ( const auto& [kLayer, indexes] : wellKLayerAndIndexesMap )
{
if ( indexes.empty() ) continue;
const auto indexTop = indexes.front();
const auto indexBottom = indexes.back();
wellLogIndexDepthOffset.setIndexOffsetDepth( kLayer,
rMeasuredDepthValues[indexTop],
rMeasuredDepthValues[indexBottom],
rTvDepthValues[indexTop],
rTvDepthValues[indexBottom] );
}
std::vector<double> propertyValues = {};
std::vector<double> measuredDepthValues = {};
std::vector<double> tvDepthValues = {};
std::map<int, std::vector<size_t>> refWellKLayerAndIndexesMap = createKLayerAndIndexMap( refWellIndexKValues, minLayerK, maxLayerK );
for ( const auto& [kLayer, indexes] : refWellKLayerAndIndexesMap )
{
if ( indexes.empty() || !wellLogIndexDepthOffset.hasIndex( kLayer ) ) continue;
const auto firstIdx = indexes.front();
const auto lastIdx = indexes.back();
if ( indexes.size() == 2 )
{
propertyValues.push_back( refWellPropertyValues[firstIdx] );
propertyValues.push_back( refWellPropertyValues[lastIdx] );
measuredDepthValues.push_back( wellLogIndexDepthOffset.getTopMd( kLayer ) );
measuredDepthValues.push_back( wellLogIndexDepthOffset.getBottomMd( kLayer ) );
tvDepthValues.push_back( wellLogIndexDepthOffset.getTopTvd( kLayer ) );
tvDepthValues.push_back( wellLogIndexDepthOffset.getBottomTvd( kLayer ) );
}
else if ( indexes.size() > 2 && wellLogIndexDepthOffset.hasIndex( kLayer ) )
{
const auto wellTopMd = wellLogIndexDepthOffset.getTopMd( kLayer );
const auto wellBottomMd = wellLogIndexDepthOffset.getBottomMd( kLayer );
const auto wellTopTvd = wellLogIndexDepthOffset.getTopTvd( kLayer );
const auto wellBottomTvd = wellLogIndexDepthOffset.getBottomTvd( kLayer );
// Add top/first samples
propertyValues.push_back( refWellPropertyValues[firstIdx] );
measuredDepthValues.push_back( wellTopMd );
tvDepthValues.push_back( wellTopTvd );
// Linearize depth values between top and bottom values in kLayer and add property value
const auto refTopMd = refWellMeasuredDepthValues[firstIdx];
const auto refBottomMd = refWellMeasuredDepthValues[lastIdx];
const auto refTopTvd = refWellTvDepthValues[firstIdx];
const auto refBottomTvd = refWellTvDepthValues[lastIdx];
for ( auto it = indexes.cbegin() + 1; it != indexes.cend() - 1; ++it )
{
const auto idx = *it;
const auto percMd = ( refWellMeasuredDepthValues[idx] - refTopMd ) / ( refBottomMd - refTopMd );
const auto percTvd = ( refWellTvDepthValues[idx] - refTopTvd ) / ( refBottomTvd - refTopTvd );
propertyValues.push_back( refWellPropertyValues[idx] );
measuredDepthValues.push_back( percMd * ( wellBottomMd - wellTopMd ) + wellTopMd );
tvDepthValues.push_back( percTvd * ( wellBottomTvd - wellTopTvd ) + wellTopTvd );
}
// Add bottom/last samples
propertyValues.push_back( refWellPropertyValues[lastIdx] );
measuredDepthValues.push_back( wellBottomMd );
tvDepthValues.push_back( wellBottomTvd );
}
}
rPropertyValues = propertyValues;
rMeasuredDepthValues = measuredDepthValues;
rTvDepthValues = tvDepthValues;
}
//--------------------------------------------------------------------------------------------------
/// Search well path for LAS-files containing Well Bore Stability data and set them in the extractor.
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::findAndLoadWbsParametersFromLasFiles( const RimWellPath* wellPath, RigGeoMechWellLogExtractor* geomExtractor )
{
auto allParams = RigWbsParameter::allParameters();
for ( const RigWbsParameter& parameter : allParams )
{
QString lasAddress = parameter.addressString( RigWbsParameter::LAS_FILE );
QString lasUnits;
std::vector<std::pair<double, double>> lasFileValues =
RimWellLogFile::findMdAndChannelValuesForWellPath( wellPath, lasAddress, &lasUnits );
if ( !lasFileValues.empty() )
{
QString extractorUnits = RigGeoMechWellLogExtractor::parameterInputUnits( parameter );
if ( RiaWellLogUnitTools<double>::convertValues( &lasFileValues, lasUnits, extractorUnits, wellPath->wellPathGeometry() ) )
{
geomExtractor->setWbsLasValues( parameter, lasFileValues );
}
else
{
QString errMsg =
QString( "Could not convert units of LAS-channel %1 from %2 to %3" ).arg( lasAddress ).arg( lasUnits ).arg( extractorUnits );
RiaLogging::error( errMsg );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setAutoNameComponents( bool addCaseName, bool addProperty, bool addWellname, bool addTimeStep, bool addDate )
{
m_addCaseNameToCurveName = addCaseName;
m_addPropertyToCurveName = addProperty;
m_addWellNameToCurveName = addWellname;
m_addTimestepToCurveName = addTimeStep;
m_addDateToCurveName = addDate;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::PhaseType RimWellLogExtractionCurve::phaseType() const
{
auto phase = RiaDefines::PhaseType::PHASE_NOT_APPLICABLE;
if ( m_eclipseResultDefinition )
{
phase = m_eclipseResultDefinition->resultPhaseType();
}
return phase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellDateFromGridCaseModel( RimCase* gridCaseModel, int timeStep )
{
auto* geomCase = dynamic_cast<RimGeoMechCase*>( gridCaseModel );
auto* eclipseCase = dynamic_cast<RimEclipseCase*>( gridCaseModel );
QStringList timeStepNames;
if ( eclipseCase )
{
if ( eclipseCase->eclipseCaseData() )
{
timeStepNames = eclipseCase->timeStepStrings();
}
}
else if ( geomCase )
{
if ( geomCase->geoMechData() )
{
timeStepNames = geomCase->timeStepStrings();
}
}
if ( timeStep >= 0 && timeStep < timeStepNames.size() ) return timeStepNames[timeStep];
return "01_Jan_2000";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<QString> RimWellLogExtractionCurve::sortedSimWellNames()
{
std::set<QString> sortedWellNames;
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
if ( eclipseCase )
{
sortedWellNames = eclipseCase->sortedSimWellNames();
}
return sortedWellNames;
}
//--------------------------------------------------------------------------------------------------
/// Clean up existing generated well paths
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::clearGeneratedSimWellPaths()
{
RimWellLogPlotCollection* wellLogCollection = RimMainPlotCollection::current()->wellLogPlotCollection();
for ( auto wellPath : m_wellPathsWithExtractors )
{
wellLogCollection->removeExtractors( wellPath );
}
m_wellPathsWithExtractors.clear();
}
QList<caf::PdmOptionItemInfo> RimWellLogExtractionCurve::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions )
{
QList<caf::PdmOptionItemInfo> options;
options = RimWellLogCurve::calculateValueOptions( fieldNeedingOptions );
if ( options.size() > 0 ) return options;
if ( fieldNeedingOptions == &m_wellPath )
{
RimTools::wellPathOptionItems( &options );
}
if ( fieldNeedingOptions == &m_refWellPath )
{
options.push_back( caf::PdmOptionItemInfo( QString( "None" ), nullptr ) );
RimTools::wellPathOptionItemsSubset( { m_wellPath() }, &options );
}
else if ( fieldNeedingOptions == &m_case )
{
RimTools::caseOptionItems( &options );
}
else if ( fieldNeedingOptions == &m_timeStep )
{
RimTools::timeStepsForCase( m_case, &options );
}
else if ( fieldNeedingOptions == &m_simWellName )
{
std::set<QString> sortedWellNames = this->sortedSimWellNames();
caf::IconProvider simWellIcon( ":/Well.svg" );
for ( const QString& wname : sortedWellNames )
{
options.push_back( caf::PdmOptionItemInfo( wname, wname, false, simWellIcon ) );
}
}
else if ( fieldNeedingOptions == &m_branchIndex )
{
auto branches = RiaSimWellBranchTools::simulationWellBranches( m_simWellName, m_branchDetection );
options = RiaSimWellBranchTools::valueOptionsForBranchIndexField( branches );
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimPlotCurve::updateFieldUiState();
caf::PdmUiGroup* curveDataGroup = uiOrdering.addNewGroupWithKeyword( "Data Source", dataSourceGroupKeyword() );
curveDataGroup->add( &m_case );
RimGeoMechCase* geomCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
if ( eclipseCase )
{
curveDataGroup->add( &m_trajectoryType );
if ( m_trajectoryType() == WELL_PATH )
{
curveDataGroup->add( &m_wellPath );
curveDataGroup->add( &m_refWellPath );
RimWellLogCurve::defineUiOrdering( uiConfigName, uiOrdering );
}
else
{
curveDataGroup->add( &m_simWellName );
RiaSimWellBranchTools::appendSimWellBranchFieldsIfRequiredFromSimWellName( curveDataGroup,
m_simWellName,
m_branchDetection,
m_branchIndex );
}
m_eclipseResultDefinition->uiOrdering( uiConfigName, *curveDataGroup );
}
else if ( geomCase )
{
curveDataGroup->add( &m_geomPartId );
curveDataGroup->add( &m_wellPath );
curveDataGroup->add( &m_refWellPath );
RimWellLogCurve::defineUiOrdering( uiConfigName, uiOrdering );
m_geomResultDefinition->uiOrdering( uiConfigName, *curveDataGroup );
}
if ( ( eclipseCase && m_eclipseResultDefinition->hasDynamicResult() ) || geomCase )
{
curveDataGroup->add( &m_timeStep );
}
RimStackablePlotCurve::defaultUiOrdering( uiOrdering );
if ( m_namingMethod == RiaDefines::ObjectNamingMethod::AUTO )
{
auto nameGroup = uiOrdering.findGroup( RiaDefines::curveNameGroupName() );
nameGroup->add( &m_addWellNameToCurveName );
nameGroup->add( &m_addCaseNameToCurveName );
nameGroup->add( &m_addPropertyToCurveName );
nameGroup->add( &m_addDateToCurveName );
nameGroup->add( &m_addTimestepToCurveName );
}
uiOrdering.skipRemainingFields( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::initAfterRead()
{
RimWellLogCurve::initAfterRead();
RimGeoMechCase* geomCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
m_eclipseResultDefinition->setEclipseCase( eclipseCase );
m_geomResultDefinition->setGeoMechCase( geomCase );
connectCaseSignals( m_case.value() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::dataSourceGroupKeyword()
{
return "DataSource";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::defineUiTreeOrdering( caf::PdmUiTreeOrdering& uiTreeOrdering, QString uiConfigName /*= ""*/ )
{
uiTreeOrdering.skipRemainingChildren( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setLogScaleFromSelectedResult()
{
QString resVar = m_eclipseResultDefinition->resultVariable();
if ( RiaResultNames::isLogarithmicResult( resVar ) )
{
RimWellLogTrack* track = firstAncestorOrThisOfType<RimWellLogTrack>();
if ( track && track->curveCount() == 1 ) track->setLogarithmicScale( true );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::createCurveAutoName()
{
RimGeoMechCase* geomCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
QStringList generatedCurveName;
if ( m_addWellNameToCurveName )
{
if ( !wellName().isEmpty() )
{
generatedCurveName += wellName();
if ( m_trajectoryType == SIMULATION_WELL &&
RiaSimWellBranchTools::simulationWellBranches( m_simWellName, m_branchDetection ).size() > 1 )
{
generatedCurveName.push_back( " Br" + QString::number( m_branchIndex + 1 ) );
}
}
}
if ( m_addCaseNameToCurveName && m_case() )
{
generatedCurveName.push_back( m_case->caseUserDescription() );
}
if ( m_addPropertyToCurveName && !wellLogChannelUiName().isEmpty() )
{
generatedCurveName.push_back( wellLogChannelUiName() );
}
if ( m_addTimestepToCurveName || m_addDateToCurveName )
{
size_t maxTimeStep = 0;
if ( eclipseCase )
{
if ( eclipseCase->eclipseCaseData() )
{
maxTimeStep = eclipseCase->eclipseCaseData()->results( m_eclipseResultDefinition->porosityModel() )->maxTimeStepCount();
}
}
else if ( geomCase )
{
if ( geomCase->geoMechData() )
{
maxTimeStep = geomCase->geoMechData()->femPartResults()->totalSteps();
}
}
if ( m_addDateToCurveName )
{
QString dateString = wellDate();
if ( !dateString.isEmpty() )
{
generatedCurveName.push_back( dateString );
}
}
if ( m_addTimestepToCurveName )
{
generatedCurveName.push_back( QString( "[%1/%2]" ).arg( m_timeStep() + 1 ).arg( maxTimeStep ) );
}
}
if ( m_refWellPath() != nullptr && !m_refWellPath->name().isEmpty() )
{
generatedCurveName.push_back( QString( "Ref. Well: %1" ).arg( m_refWellPath->name() ) );
}
return generatedCurveName.join( ", " );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellLogChannelUiName() const
{
RimGeoMechCase* geoMechCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
QString name;
if ( eclipseCase )
{
name = caf::Utils::makeValidFileBasename( m_eclipseResultDefinition->resultVariableUiShortName() );
}
else if ( geoMechCase )
{
name = m_geomResultDefinition->resultVariableUiName();
}
return name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellLogChannelName() const
{
RimGeoMechCase* geoMechCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
QString name;
if ( eclipseCase )
{
name = caf::Utils::makeValidFileBasename( m_eclipseResultDefinition->resultVariableUiShortName() );
}
else if ( geoMechCase )
{
name = caf::Utils::makeValidFileBasename( m_geomResultDefinition->resultVariableName() );
}
return name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellLogChannelUnits() const
{
RimGeoMechCase* geoMechCase = dynamic_cast<RimGeoMechCase*>( m_case.value() );
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
QString name;
if ( eclipseCase )
{
name = RiaWellLogUnitTools<double>::noUnitString();
}
else if ( geoMechCase )
{
name = m_geomResultDefinition->defaultLasUnits();
}
return name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellName() const
{
if ( m_trajectoryType() == WELL_PATH )
{
if ( m_wellPath )
{
return m_wellPath->name();
}
else
{
return QString();
}
}
else
{
return m_simWellName;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::wellDate() const
{
return RimWellLogExtractionCurve::wellDateFromGridCaseModel( m_case(), m_timeStep );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimWellLogExtractionCurve::branchIndex() const
{
return m_branchIndex();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimWellLogExtractionCurve::branchDetection() const
{
return m_branchDetection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimWellLogExtractionCurve::isEclipseCurve() const
{
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>( m_case.value() );
if ( eclipseCase )
{
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::caseName() const
{
if ( m_case )
{
return m_case->caseUserDescription();
}
return QString();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimWellLogExtractionCurve::currentTimeStep() const
{
return m_timeStep();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setCurrentTimeStep( int timeStep )
{
m_timeStep = timeStep;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setEclipseResultVariable( const QString& resVarname )
{
m_eclipseResultDefinition->setResultVariable( resVarname );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogExtractionCurve::eclipseResultVariable() const
{
return m_eclipseResultDefinition->resultVariable();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setEclipseResultCategory( RiaDefines::ResultCatType catType )
{
m_eclipseResultDefinition->setResultType( catType );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setGeoMechResultAddress( const RigFemResultAddress& resAddr )
{
m_geomResultDefinition->setResultAddress( resAddr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setGeoMechPart( int partId )
{
m_geomPartId = partId;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimWellLogExtractionCurve::geoMechPart() const
{
return m_geomPartId;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setTrajectoryType( TrajectoryType trajectoryType )
{
m_trajectoryType = trajectoryType;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setWellName( QString wellName )
{
m_simWellName = wellName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setBranchDetection( bool branchDetection )
{
m_branchDetection = branchDetection;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::setBranchIndex( int index )
{
m_branchIndex = index;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::connectCaseSignals( RimCase* rimCase )
{
if ( rimCase )
{
rimCase->settingsChanged.connect( this, &RimWellLogExtractionCurve::onCaseSettingsChanged );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogExtractionCurve::onCaseSettingsChanged( const caf::SignalEmitter* emitter )
{
loadDataAndUpdate( true );
}