ResInsight/ApplicationCode/ReservoirDataModel/RigCaseData.cpp
Jacob Støren 3806ff9baf Well cell transparency: Turned off well cell transparency when no well pipe is visible.
For results visulaization, cell edge and faults faces.
Not yet done for visualization without result colors.
p4#: 21462
2013-04-26 16:46:38 +02:00

507 lines
18 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCaseData.h"
#include "RigMainGrid.h"
#include "RigCaseCellResultsData.h"
#include "RigGridScalarDataAccess.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCaseData::RigCaseData()
{
m_mainGrid = new RigMainGrid();
m_matrixModelResults = new RigCaseCellResultsData(m_mainGrid.p());
m_fractureModelResults = new RigCaseCellResultsData(m_mainGrid.p());
m_activeCellInfo = new RigActiveCellInfo;
m_fractureActiveCellInfo = new RigActiveCellInfo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCaseData::~RigCaseData()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::setMainGrid(RigMainGrid* mainGrid)
{
m_mainGrid = mainGrid;
m_matrixModelResults->setMainGrid(m_mainGrid.p());
m_fractureModelResults->setMainGrid(m_mainGrid.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::allGrids(std::vector<RigGridBase*>* grids)
{
CVF_ASSERT(grids);
if (m_mainGrid.isNull())
{
return;
}
size_t i;
for (i = 0; i < m_mainGrid->gridCount(); i++)
{
grids->push_back(m_mainGrid->gridByIndex(i));
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::allGrids(std::vector<const RigGridBase*>* grids) const
{
CVF_ASSERT(grids);
if (m_mainGrid.isNull())
{
return;
}
size_t i;
for (i = 0; i < m_mainGrid->gridCount(); i++)
{
grids->push_back(m_mainGrid->gridByIndex(i));
}
}
//--------------------------------------------------------------------------------------------------
/// Get grid by index. The main grid has index 0, so the first lgr has index 1
//--------------------------------------------------------------------------------------------------
const RigGridBase* RigCaseData::grid(size_t index) const
{
CVF_ASSERT(m_mainGrid.notNull());
return m_mainGrid->gridByIndex(index);
}
//--------------------------------------------------------------------------------------------------
/// Get grid by index. The main grid has index 0, so the first lgr has index 1
//--------------------------------------------------------------------------------------------------
RigGridBase* RigCaseData::grid(size_t index)
{
CVF_ASSERT(m_mainGrid.notNull());
return m_mainGrid->gridByIndex(index);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseData::gridCount() const
{
CVF_ASSERT(m_mainGrid.notNull());
return m_mainGrid->gridCount();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::computeWellCellsPrGrid()
{
// If we have computed this already, return
if (m_wellCellsInGrid.size()) return;
std::vector<RigGridBase*> grids;
this->allGrids(&grids);
size_t gIdx;
// Allocate and initialize the arrays
m_wellCellsInGrid.resize(grids.size());
m_gridCellToWellIndex.resize(grids.size());
for (gIdx = 0; gIdx < grids.size(); ++gIdx)
{
if (m_wellCellsInGrid[gIdx].isNull() || m_wellCellsInGrid[gIdx]->size() != grids[gIdx]->cellCount())
{
m_wellCellsInGrid[gIdx] = new cvf::UByteArray;
m_wellCellsInGrid[gIdx]->resize(grids[gIdx]->cellCount());
m_gridCellToWellIndex[gIdx] = new cvf::UIntArray;
m_gridCellToWellIndex[gIdx]->resize(grids[gIdx]->cellCount());
}
m_wellCellsInGrid[gIdx]->setAll(false);
m_gridCellToWellIndex[gIdx]->setAll(cvf::UNDEFINED_UINT);
}
// Fill arrays with data
size_t wIdx;
for (wIdx = 0; wIdx < m_wellResults.size(); ++wIdx)
{
size_t tIdx;
for (tIdx = 0; tIdx < m_wellResults[wIdx]->m_wellCellsTimeSteps.size(); ++tIdx)
{
RigWellResultFrame& wellCells = m_wellResults[wIdx]->m_wellCellsTimeSteps[tIdx];
size_t gridIndex = wellCells.m_wellHead.m_gridIndex;
size_t gridCellIndex = wellCells.m_wellHead.m_gridCellIndex;
CVF_ASSERT(gridIndex < m_wellCellsInGrid.size() && gridCellIndex < m_wellCellsInGrid[gridIndex]->size());
m_wellCellsInGrid[gridIndex]->set(gridCellIndex, true);
m_gridCellToWellIndex[gridIndex]->set(gridCellIndex, static_cast<cvf::uint>(wIdx));
size_t sIdx;
for (sIdx = 0; sIdx < wellCells.m_wellResultBranches.size(); ++sIdx)
{
RigWellResultBranch& wellSegment = wellCells.m_wellResultBranches[sIdx];
size_t cdIdx;
for (cdIdx = 0; cdIdx < wellSegment.m_wellCells.size(); ++cdIdx)
{
gridIndex = wellSegment.m_wellCells[cdIdx].m_gridIndex;
gridCellIndex = wellSegment.m_wellCells[cdIdx].m_gridCellIndex;
CVF_ASSERT(gridIndex < m_wellCellsInGrid.size() && gridCellIndex < m_wellCellsInGrid[gridIndex]->size());
m_wellCellsInGrid[gridIndex]->set(gridCellIndex, true);
m_gridCellToWellIndex[gridIndex]->set(gridCellIndex, static_cast<cvf::uint>(wIdx));
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::setWellResults(const cvf::Collection<RigSingleWellResultsData>& data)
{
m_wellResults = data;
m_wellCellsInGrid.clear();
m_gridCellToWellIndex.clear();
computeWellCellsPrGrid();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::UByteArray* RigCaseData::wellCellsInGrid(size_t gridIndex)
{
computeWellCellsPrGrid();
CVF_ASSERT(gridIndex < m_wellCellsInGrid.size());
return m_wellCellsInGrid[gridIndex].p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::UIntArray* RigCaseData::gridCellToWellIndex(size_t gridIndex)
{
computeWellCellsPrGrid();
CVF_ASSERT(gridIndex < m_gridCellToWellIndex.size());
return m_gridCellToWellIndex[gridIndex].p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCell& RigCaseData::cellFromWellResultCell(const RigWellResultCell& wellResultCell)
{
size_t gridIndex = wellResultCell.m_gridIndex;
size_t gridCellIndex = wellResultCell.m_gridCellIndex;
std::vector<RigGridBase*> grids;
allGrids(&grids);
return grids[gridIndex]->cell(gridCellIndex);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseData::findSharedSourceFace(cvf::StructGridInterface::FaceType& sharedSourceFace,const RigWellResultCell& sourceWellCellResult, const RigWellResultCell& otherWellCellResult) const
{
size_t gridIndex = sourceWellCellResult.m_gridIndex;
size_t gridCellIndex = sourceWellCellResult.m_gridCellIndex;
size_t otherGridIndex = otherWellCellResult.m_gridIndex;
size_t otherGridCellIndex = otherWellCellResult.m_gridCellIndex;
if (gridIndex != otherGridIndex) return false;
std::vector<const RigGridBase*> grids;
allGrids(&grids);
const RigGridBase* grid = grids[gridIndex];
size_t i, j, k;
grid->ijkFromCellIndex(gridCellIndex, &i, &j, &k);
size_t faceIdx;
for (faceIdx = 0; faceIdx < 6; faceIdx++)
{
cvf::StructGridInterface::FaceType sourceFace = static_cast<cvf::StructGridInterface::FaceType>(faceIdx);
size_t ni, nj, nk;
grid->neighborIJKAtCellFace(i, j, k, sourceFace, &ni, &nj, &nk);
size_t neighborCellIndex = grid->cellIndexFromIJK(ni, nj, nk);
if (neighborCellIndex == otherGridCellIndex)
{
sharedSourceFace = sourceFace;
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
/// Helper class used to find min/max range for valid and active cells
//--------------------------------------------------------------------------------------------------
class CellRangeBB
{
public:
CellRangeBB()
: m_min(cvf::UNDEFINED_SIZE_T, cvf::UNDEFINED_SIZE_T, cvf::UNDEFINED_SIZE_T),
m_max(cvf::Vec3st::ZERO)
{
}
void add(size_t i, size_t j, size_t k)
{
if (i < m_min.x()) m_min.x() = i;
if (j < m_min.y()) m_min.y() = j;
if (k < m_min.z()) m_min.z() = k;
if (i > m_max.x()) m_max.x() = i;
if (j > m_max.y()) m_max.y() = j;
if (k > m_max.z()) m_max.z() = k;
}
public:
cvf::Vec3st m_min;
cvf::Vec3st m_max;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::computeActiveCellIJKBBox()
{
if (m_mainGrid.notNull() && m_activeCellInfo.notNull() && m_fractureActiveCellInfo.notNull())
{
CellRangeBB matrixModelActiveBB;
CellRangeBB fractureModelActiveBB;
size_t idx;
for (idx = 0; idx < m_mainGrid->cellCount(); idx++)
{
size_t i, j, k;
m_mainGrid->ijkFromCellIndex(idx, &i, &j, &k);
if (m_activeCellInfo->isActive(idx))
{
matrixModelActiveBB.add(i, j, k);
}
if (m_fractureActiveCellInfo->isActive(idx))
{
fractureModelActiveBB.add(i, j, k);
}
}
m_activeCellInfo->setIJKBoundingBox(matrixModelActiveBB.m_min, matrixModelActiveBB.m_max);
m_fractureActiveCellInfo->setIJKBoundingBox(fractureModelActiveBB.m_min, fractureModelActiveBB.m_max);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::computeActiveCellBoundingBoxes()
{
computeActiveCellIJKBBox();
computeActiveCellsGeometryBoundingBox();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigActiveCellInfo* RigCaseData::activeCellInfo(RifReaderInterface::PorosityModelResultType porosityModel)
{
if (porosityModel == RifReaderInterface::MATRIX_RESULTS)
{
return m_activeCellInfo.p();
}
return m_fractureActiveCellInfo.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigActiveCellInfo* RigCaseData::activeCellInfo(RifReaderInterface::PorosityModelResultType porosityModel) const
{
if (porosityModel == RifReaderInterface::MATRIX_RESULTS)
{
return m_activeCellInfo.p();
}
return m_fractureActiveCellInfo.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::setActiveCellInfo(RifReaderInterface::PorosityModelResultType porosityModel, RigActiveCellInfo* activeCellInfo)
{
if (porosityModel == RifReaderInterface::MATRIX_RESULTS)
{
m_activeCellInfo = activeCellInfo;
}
else
{
m_fractureActiveCellInfo = activeCellInfo;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::computeActiveCellsGeometryBoundingBox()
{
if (m_activeCellInfo.isNull() || m_fractureActiveCellInfo.isNull())
{
return;
}
if (m_mainGrid.isNull())
{
cvf::BoundingBox bb;
m_activeCellInfo->setGeometryBoundingBox(bb);
m_fractureActiveCellInfo->setGeometryBoundingBox(bb);
return;
}
RigActiveCellInfo* activeInfos[2];
activeInfos[0] = m_fractureActiveCellInfo.p();
activeInfos[1] = m_activeCellInfo.p(); // Last, to make this bb.min become display offset
cvf::BoundingBox bb;
for (int acIdx = 0; acIdx < 2; ++acIdx)
{
bb.reset();
if (m_mainGrid->nodes().size() == 0)
{
bb.add(cvf::Vec3d::ZERO);
}
else
{
for (size_t i = 0; i < m_mainGrid->cellCount(); i++)
{
if (activeInfos[acIdx]->isActive(i))
{
const RigCell& c = m_mainGrid->cells()[i];
const caf::SizeTArray8& indices = c.cornerIndices();
size_t idx;
for (idx = 0; idx < 8; idx++)
{
bb.add(m_mainGrid->nodes()[indices[idx]]);
}
}
}
}
activeInfos[acIdx]->setGeometryBoundingBox(bb);
}
m_mainGrid->setDisplayModelOffset(bb.min());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCaseCellResultsData* RigCaseData::results(RifReaderInterface::PorosityModelResultType porosityModel)
{
if (porosityModel == RifReaderInterface::MATRIX_RESULTS)
{
return m_matrixModelResults.p();
}
return m_fractureModelResults.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigCaseCellResultsData* RigCaseData::results(RifReaderInterface::PorosityModelResultType porosityModel) const
{
if (porosityModel == RifReaderInterface::MATRIX_RESULTS)
{
return m_matrixModelResults.p();
}
return m_fractureModelResults.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::StructGridScalarDataAccess> RigCaseData::dataAccessObject(const RigGridBase* grid,
RifReaderInterface::PorosityModelResultType porosityModel,
size_t timeStepIndex,
size_t scalarSetIndex)
{
if (timeStepIndex != cvf::UNDEFINED_SIZE_T &&
scalarSetIndex != cvf::UNDEFINED_SIZE_T)
{
cvf::ref<cvf::StructGridScalarDataAccess> dataAccess = RigGridScalarDataAccessFactory::createPerGridDataAccessObject( this, grid->gridIndex(), porosityModel, timeStepIndex, scalarSetIndex);
return dataAccess;
}
return NULL;
}
/*
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseData::closeReaderInterface()
{
RifReaderInterface* readerInterface = m_matrixModelResults->readerInterface();
if (readerInterface)
{
readerInterface->close();
}
}
*/