ResInsight/ApplicationLibCode/ReservoirDataModel/RigTofAccumulatedPhaseFractionsCalculator.cpp
2023-05-11 08:37:58 +02:00

158 lines
8.5 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigTofAccumulatedPhaseFractionsCalculator.h"
#include "RiaDefines.h"
#include "RiaPorosityModel.h"
#include "RiaResultNames.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigFlowDiagResultAddress.h"
#include "RigFlowDiagResults.h"
#include "RigResultAccessor.h"
#include "RigResultAccessorFactory.h"
#include "RimEclipseResultCase.h"
#include "RimFlowDiagSolution.h"
#include "RimReservoirCellResultsStorage.h"
#include <map>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigTofAccumulatedPhaseFractionsCalculator::RigTofAccumulatedPhaseFractionsCalculator( RimEclipseResultCase* caseToApply,
QString wellname,
size_t timestep )
{
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
if ( !eclipseCaseData ) return;
const std::vector<double>* swatResults = eclipseCaseData->resultValues( RiaDefines::PorosityModelType::MATRIX_MODEL,
RiaDefines::ResultCatType::DYNAMIC_NATIVE,
RiaResultNames::swat(),
timestep );
const std::vector<double>* soilResults = eclipseCaseData->resultValues( RiaDefines::PorosityModelType::MATRIX_MODEL,
RiaDefines::ResultCatType::DYNAMIC_NATIVE,
RiaResultNames::soil(),
timestep );
const std::vector<double>* sgasResults = eclipseCaseData->resultValues( RiaDefines::PorosityModelType::MATRIX_MODEL,
RiaDefines::ResultCatType::DYNAMIC_NATIVE,
RiaResultNames::sgas(),
timestep );
const std::vector<double>* porvResults =
eclipseCaseData->resultValues( RiaDefines::PorosityModelType::MATRIX_MODEL, RiaDefines::ResultCatType::STATIC_NATIVE, "PORV", 0 );
RimFlowDiagSolution* flowDiagSolution = caseToApply->defaultFlowDiagSolution();
std::string resultNameTof = "TOF";
const std::vector<double>* tofData =
flowDiagSolution->flowDiagResults()->resultValues( RigFlowDiagResultAddress( resultNameTof,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString() ),
timestep );
std::string resultNameFraction = "Fraction";
const std::vector<double>* fractionData =
flowDiagSolution->flowDiagResults()->resultValues( RigFlowDiagResultAddress( resultNameFraction,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString() ),
timestep );
sortTofAndCalculateAccPhaseFraction( tofData,
fractionData,
porvResults,
swatResults,
soilResults,
sgasResults,
m_tofInIncreasingOrder,
m_accumulatedPhaseFractionSwat,
m_accumulatedPhaseFractionSoil,
m_accumulatedPhaseFractionSgas );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigTofAccumulatedPhaseFractionsCalculator::sortTofAndCalculateAccPhaseFraction( const std::vector<double>* tofData,
const std::vector<double>* fractionData,
const std::vector<double>* porvResults,
const std::vector<double>* swatResults,
const std::vector<double>* soilResults,
const std::vector<double>* sgasResults,
std::vector<double>& tofInIncreasingOrder,
std::vector<double>& accumulatedPhaseFractionSwat,
std::vector<double>& accumulatedPhaseFractionSoil,
std::vector<double>& accumulatedPhaseFractionSgas )
{
if ( tofData == nullptr || fractionData == nullptr )
{
return;
}
std::map<double, std::vector<int>> tofAndIndexMap;
for ( int i = 0; i < static_cast<int>( tofData->size() ); i++ )
{
if ( ( *tofData )[i] == HUGE_VAL ) continue;
std::vector<int> vectorOfIndexes;
vectorOfIndexes.push_back( i );
auto iteratorBoolFromInsertToMap = tofAndIndexMap.insert( std::make_pair( tofData->at( i ), vectorOfIndexes ) );
if ( !iteratorBoolFromInsertToMap.second )
{
// Element exist already, was not inserted
iteratorBoolFromInsertToMap.first->second.push_back( i );
}
}
double fractionPorvSum = 0.0;
double fractionPorvPhaseSumSwat = 0.0;
double fractionPorvPhaseSumSoil = 0.0;
double fractionPorvPhaseSumSgas = 0.0;
for ( const auto& element : tofAndIndexMap )
{
double tofValue = element.first;
for ( int index : element.second )
{
fractionPorvSum += fractionData->at( index ) * porvResults->at( index );
if ( swatResults != nullptr )
{
fractionPorvPhaseSumSwat += fractionData->at( index ) * porvResults->at( index ) * swatResults->at( index );
}
if ( soilResults != nullptr )
{
fractionPorvPhaseSumSoil += fractionData->at( index ) * porvResults->at( index ) * soilResults->at( index );
}
if ( sgasResults != nullptr )
{
fractionPorvPhaseSumSgas += fractionData->at( index ) * porvResults->at( index ) * sgasResults->at( index );
}
}
tofInIncreasingOrder.push_back( tofValue );
accumulatedPhaseFractionSwat.push_back( fractionPorvPhaseSumSwat / fractionPorvSum );
accumulatedPhaseFractionSoil.push_back( fractionPorvPhaseSumSoil / fractionPorvSum );
accumulatedPhaseFractionSgas.push_back( fractionPorvPhaseSumSgas / fractionPorvSum );
}
}