ResInsight/ApplicationLibCode/FileInterface/RifReaderEclipseOutput.cpp
2021-05-26 13:28:45 +02:00

2522 lines
107 KiB
C++
Raw Blame History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifReaderEclipseOutput.h"
#include "RiaCellDividingTools.h"
#include "RiaEclipseUnitTools.h"
#include "RiaLogging.h"
#include "RiaPreferences.h"
#include "RiaStringEncodingTools.h"
#include "RifActiveCellsReader.h"
#include "RifEclipseInputFileTools.h"
#include "RifEclipseOutputFileTools.h"
#include "RifHdf5ReaderInterface.h"
#include "RifReaderSettings.h"
#ifdef USE_HDF5
#include "RifHdf5Reader.h"
#endif
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultInfo.h"
#include "RigEquil.h"
#include "RigMainGrid.h"
#include "RigSimWellData.h"
#include "RigWellResultPoint.h"
#include "cafProgressInfo.h"
#include "cvfTrace.h"
#include "ert/ecl/ecl_kw_magic.h"
#include "ert/ecl/ecl_nnc_data.h"
#include "ert/ecl/ecl_nnc_export.h"
#include "ert/ecl/ecl_nnc_geometry.h"
#include <QDateTime>
#include <QFileInfo>
#include <cmath> // Needed for HUGE_VAL on Linux
#include <iostream>
#include <map>
#ifdef USE_OPENMP
#include <omp.h>
#endif
//--------------------------------------------------------------------------------------------------
/// ECLIPSE cell numbering layout:
/// Lower layer: Upper layer
/// Low Depth High Depth
/// Low K High K
/// Shallow Deep
/// 2---3 6---7
/// | | | |
/// 0---1 4---5
///
///
///
//--------------------------------------------------------------------------------------------------
// The indexing conventions for vertices in ECLIPSE
//
// 2-------------3
// /| /|
// / | / | /j
// / | / | /
// 0-------------1 | *---i
// | | | | |
// | 6---------|---7 |
// | / | / |k
// | / | /
// |/ |/
// 4-------------5
// vertex indices
//
// The indexing conventions for vertices in ResInsight
//
// 7-------------6 |k
// /| /| | /j
// / | / | |/
// / | / | *---i
// 4-------------5 |
// | | | |
// | 3---------|---2
// | / | /
// | / | /
// |/ |/
// 0-------------1
// vertex indices
//
static const size_t cellMappingECLRi[8] = { 0, 1, 3, 2, 4, 5, 7, 6 };
//**************************************************************************************************
// Static functions
//**************************************************************************************************
bool transferGridCellData( RigMainGrid* mainGrid,
RigActiveCellInfo* activeCellInfo,
RigActiveCellInfo* fractureActiveCellInfo,
RigGridBase* localGrid,
const ecl_grid_type* localEclGrid,
size_t matrixActiveStartIndex,
size_t fractureActiveStartIndex )
{
CVF_ASSERT( activeCellInfo && fractureActiveCellInfo );
int cellCount = ecl_grid_get_global_size( localEclGrid );
size_t cellStartIndex = mainGrid->globalCellArray().size();
size_t nodeStartIndex = mainGrid->nodes().size();
RigCell defaultCell;
defaultCell.setHostGrid( localGrid );
mainGrid->globalCellArray().resize( cellStartIndex + cellCount, defaultCell );
mainGrid->nodes().resize( nodeStartIndex + cellCount * 8, cvf::Vec3d( 0, 0, 0 ) );
int progTicks = 100;
caf::ProgressInfo progInfo( progTicks, "" );
// Loop over cells and fill them with data
#pragma omp parallel
{
int cellCountPerThread = cellCount;
#ifdef USE_OPENMP
cellCountPerThread = std::max( 1, cellCount / omp_get_num_threads() );
#endif
int computedThreadCellCount = 0;
int cellsPrProgressTick = std::max( 1, cellCountPerThread / progTicks );
int maxProgressCell = cellsPrProgressTick * progTicks;
#pragma omp for
for ( int gridLocalCellIndex = 0; gridLocalCellIndex < cellCount; ++gridLocalCellIndex )
{
RigCell& cell = mainGrid->globalCellArray()[cellStartIndex + gridLocalCellIndex];
cell.setGridLocalCellIndex( gridLocalCellIndex );
// Active cell index
int matrixActiveIndex = ecl_grid_get_active_index1( localEclGrid, gridLocalCellIndex );
if ( matrixActiveIndex != -1 )
{
activeCellInfo->setCellResultIndex( cellStartIndex + gridLocalCellIndex,
matrixActiveStartIndex + matrixActiveIndex );
}
int fractureActiveIndex = ecl_grid_get_active_fracture_index1( localEclGrid, gridLocalCellIndex );
if ( fractureActiveIndex != -1 )
{
fractureActiveCellInfo->setCellResultIndex( cellStartIndex + gridLocalCellIndex,
fractureActiveStartIndex + fractureActiveIndex );
}
// Parent cell index
int parentCellIndex = ecl_grid_get_parent_cell1( localEclGrid, gridLocalCellIndex );
if ( parentCellIndex == -1 )
{
cell.setParentCellIndex( cvf::UNDEFINED_SIZE_T );
}
else
{
cell.setParentCellIndex( parentCellIndex );
}
// Corner coordinates
int cIdx;
for ( cIdx = 0; cIdx < 8; ++cIdx )
{
double* point =
mainGrid->nodes()[nodeStartIndex + (size_t)gridLocalCellIndex * 8 + cellMappingECLRi[cIdx]].ptr();
ecl_grid_get_cell_corner_xyz1( localEclGrid,
gridLocalCellIndex,
cIdx,
&( point[0] ),
&( point[1] ),
&( point[2] ) );
point[2] = -point[2]; // Flipping Z making depth become negative z values
cell.cornerIndices()[cIdx] = nodeStartIndex + (size_t)gridLocalCellIndex * 8 + cIdx;
}
// Sub grid in cell
const ecl_grid_type* subGrid = ecl_grid_get_cell_lgr1( localEclGrid, gridLocalCellIndex );
if ( subGrid != nullptr )
{
int subGridId = ecl_grid_get_lgr_nr( subGrid );
CVF_ASSERT( subGridId > 0 );
cell.setSubGrid( static_cast<RigLocalGrid*>( mainGrid->gridById( subGridId ) ) );
}
// Mark inactive long pyramid looking cells as invalid
// Forslag
// if (!invalid && (cell.isInCoarseCell() || (!cell.isActiveInMatrixModel() &&
// !cell.isActiveInFractureModel()) ) )
cell.setInvalid( cell.isLongPyramidCell() );
#ifdef USE_OPENMP
if ( omp_get_thread_num() == 0 )
{
computedThreadCellCount++;
if ( computedThreadCellCount <= maxProgressCell && computedThreadCellCount % cellsPrProgressTick == 0 )
progInfo.incrementProgress();
}
#else
computedThreadCellCount++;
if ( computedThreadCellCount <= maxProgressCell && computedThreadCellCount % cellsPrProgressTick == 0 )
progInfo.incrementProgress();
#endif
}
}
return true;
}
//==================================================================================================
//
// Class RigReaderInterfaceECL
//
//==================================================================================================
//--------------------------------------------------------------------------------------------------
/// Constructor
//--------------------------------------------------------------------------------------------------
RifReaderEclipseOutput::RifReaderEclipseOutput()
{
m_fileName.clear();
m_filesWithSameBaseName.clear();
m_eclipseCase = nullptr;
m_ecl_init_file = nullptr;
m_dynamicResultsAccess = nullptr;
}
//--------------------------------------------------------------------------------------------------
/// Destructor
//--------------------------------------------------------------------------------------------------
RifReaderEclipseOutput::~RifReaderEclipseOutput()
{
if ( m_ecl_init_file )
{
ecl_file_close( m_ecl_init_file );
}
m_ecl_init_file = nullptr;
if ( m_dynamicResultsAccess.notNull() )
{
m_dynamicResultsAccess->close();
}
}
//--------------------------------------------------------------------------------------------------
/// Read geometry from file given by name into given reservoir object
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::transferGeometry( const ecl_grid_type* mainEclGrid, RigEclipseCaseData* eclipseCase )
{
CVF_ASSERT( eclipseCase );
if ( !mainEclGrid )
{
// Some error
return false;
}
RigActiveCellInfo* activeCellInfo = eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
RigActiveCellInfo* fractureActiveCellInfo =
eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL );
CVF_ASSERT( activeCellInfo && fractureActiveCellInfo );
RigMainGrid* mainGrid = eclipseCase->mainGrid();
CVF_ASSERT( mainGrid );
{
cvf::Vec3st gridPointDim( 0, 0, 0 );
gridPointDim.x() = ecl_grid_get_nx( mainEclGrid ) + 1;
gridPointDim.y() = ecl_grid_get_ny( mainEclGrid ) + 1;
gridPointDim.z() = ecl_grid_get_nz( mainEclGrid ) + 1;
mainGrid->setGridPointDimensions( gridPointDim );
}
// std::string mainGridName = ecl_grid_get_name(mainEclGrid);
// ERT returns file path to grid file as name for main grid
mainGrid->setGridName( "Main grid" );
mainGrid->setDualPorosity( ecl_grid_dual_grid( mainEclGrid ) );
// Get and set grid and lgr metadata
size_t totalCellCount = static_cast<size_t>( ecl_grid_get_global_size( mainEclGrid ) );
int numLGRs = ecl_grid_get_num_lgr( mainEclGrid );
int lgrIdx;
for ( lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx )
{
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr( mainEclGrid, lgrIdx );
std::string lgrName = ecl_grid_get_name( localEclGrid );
int lgrId = ecl_grid_get_lgr_nr( localEclGrid );
cvf::Vec3st gridPointDim( 0, 0, 0 );
gridPointDim.x() = ecl_grid_get_nx( localEclGrid ) + 1;
gridPointDim.y() = ecl_grid_get_ny( localEclGrid ) + 1;
gridPointDim.z() = ecl_grid_get_nz( localEclGrid ) + 1;
RigLocalGrid* localGrid = new RigLocalGrid( mainGrid );
localGrid->setGridId( lgrId );
mainGrid->addLocalGrid( localGrid );
localGrid->setIndexToStartOfCells( totalCellCount );
localGrid->setGridName( lgrName );
localGrid->setGridPointDimensions( gridPointDim );
totalCellCount += ecl_grid_get_global_size( localEclGrid );
}
activeCellInfo->setReservoirCellCount( totalCellCount );
fractureActiveCellInfo->setReservoirCellCount( totalCellCount );
// Reserve room for the cells and nodes and fill them with data
mainGrid->globalCellArray().reserve( totalCellCount );
mainGrid->nodes().reserve( 8 * totalCellCount );
caf::ProgressInfo progInfo( 3 + numLGRs, "" );
{
auto task = progInfo.task( "Loading Main Grid Data", 3 );
transferGridCellData( mainGrid, activeCellInfo, fractureActiveCellInfo, mainGrid, mainEclGrid, 0, 0 );
}
size_t globalMatrixActiveSize = ecl_grid_get_nactive( mainEclGrid );
size_t globalFractureActiveSize = ecl_grid_get_nactive_fracture( mainEclGrid );
activeCellInfo->setGridCount( 1 + numLGRs );
fractureActiveCellInfo->setGridCount( 1 + numLGRs );
activeCellInfo->setGridActiveCellCounts( 0, globalMatrixActiveSize );
fractureActiveCellInfo->setGridActiveCellCounts( 0, globalFractureActiveSize );
transferCoarseningInfo( mainEclGrid, mainGrid );
for ( lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx )
{
auto task = progInfo.task( "LGR number " + QString::number( lgrIdx + 1 ), 1 );
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr( mainEclGrid, lgrIdx );
RigLocalGrid* localGrid = static_cast<RigLocalGrid*>( mainGrid->gridByIndex( lgrIdx + 1 ) );
transferGridCellData( mainGrid,
activeCellInfo,
fractureActiveCellInfo,
localGrid,
localEclGrid,
globalMatrixActiveSize,
globalFractureActiveSize );
int matrixActiveCellCount = ecl_grid_get_nactive( localEclGrid );
globalMatrixActiveSize += matrixActiveCellCount;
int fractureActiveCellCount = ecl_grid_get_nactive_fracture( localEclGrid );
globalFractureActiveSize += fractureActiveCellCount;
activeCellInfo->setGridActiveCellCounts( lgrIdx + 1, matrixActiveCellCount );
fractureActiveCellInfo->setGridActiveCellCounts( lgrIdx + 1, fractureActiveCellCount );
transferCoarseningInfo( localEclGrid, localGrid );
}
mainGrid->initAllSubGridsParentGridPointer();
activeCellInfo->computeDerivedData();
fractureActiveCellInfo->computeDerivedData();
return true;
}
//--------------------------------------------------------------------------------------------------
/// Open file and read geometry into given reservoir object
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::open( const QString& fileName, RigEclipseCaseData* eclipseCase )
{
CVF_ASSERT( eclipseCase );
caf::ProgressInfo progress( 100, "Reading Grid" );
if ( !RifEclipseOutputFileTools::isValidEclipseFileName( fileName ) )
{
QString errorMessage =
QFileInfo( fileName ).fileName() +
QString( " is not a valid Eclipse file name.\n"
"Please make sure the file does not contain a mix of upper and lower case letters." );
RiaLogging::error( errorMessage );
return false;
}
QStringList fileSet;
{
auto task = progress.task( "Get set of files" );
if ( !RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName( fileName, &fileSet ) ) return false;
m_fileName = fileName;
}
ecl_grid_type* mainEclGrid = nullptr;
{
auto task = progress.task( "Open Init File and Load Main Grid", 19 );
// Keep the set of files of interest
m_filesWithSameBaseName = fileSet;
openInitFile();
// Read geometry
// Todo: Needs to check existence of file before calling ert, else it will abort
mainEclGrid = loadAllGrids();
if ( !mainEclGrid )
{
QString errorMessage = QString( " Failed to create a main grid from file\n%1" ).arg( m_fileName );
RiaLogging::error( errorMessage );
return false;
}
}
{
auto task = progress.task( "Transferring grid geometry", 10 );
if ( !transferGeometry( mainEclGrid, eclipseCase ) ) return false;
}
{
auto task = progress.task( "Reading faults", 10 );
if ( isFaultImportEnabled() )
{
cvf::Collection<RigFault> faults;
importFaults( fileSet, &faults );
RigMainGrid* mainGrid = eclipseCase->mainGrid();
mainGrid->setFaults( faults );
}
}
m_eclipseCase = eclipseCase;
{
auto task = progress.task( "Reading Results Meta data", 25 );
buildMetaData( mainEclGrid );
}
{
auto task = progress.task( "Handling NCC data", 20 );
if ( isNNCsEnabled() )
{
caf::ProgressInfo nncProgress( 10, "" );
RigMainGrid* mainGrid = eclipseCase->mainGrid();
{
auto subNncTask = nncProgress.task( "Reading static NNC data" );
transferStaticNNCData( mainEclGrid, m_ecl_init_file, mainGrid );
}
// This test should probably be improved to test more directly for presence of NNC data
if ( m_eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->hasFlowDiagUsableFluxes() )
{
auto subNncTask = nncProgress.task( "Reading dynamic NNC data" );
transferDynamicNNCData( mainEclGrid, mainGrid );
}
RigActiveCellInfo* activeCellInfo =
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
bool includeInactiveCells = RiaPreferences::current()->readerSettings()->includeInactiveCellsInFaultGeometry;
mainGrid->nncData()->setSourceDataForProcessing( mainGrid, activeCellInfo, includeInactiveCells );
}
}
{
auto task = progress.task( "Handling well information", 10 );
if ( !RiaPreferences::current()->readerSettings()->skipWellData() )
{
readWellCells( mainEclGrid, isImportOfCompleteMswDataEnabled() );
}
else
{
RiaLogging::info( "Skipping import of simulation well data" );
}
}
{
auto task = progress.task( "Releasing reader memory", 5 );
ecl_grid_free( mainEclGrid );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::setHdf5FileName( const QString& fileName )
{
CVF_ASSERT( m_eclipseCase );
RigCaseCellResultsData* matrixModelResults = m_eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
CVF_ASSERT( matrixModelResults );
if ( fileName.isEmpty() )
{
RiaLogging::info( "HDF: Removing all existing Sour Sim data ..." );
matrixModelResults->eraseAllSourSimData();
return;
}
RiaLogging::info( QString( "HDF: Start import of data from : " ).arg( fileName ) );
RiaLogging::info( "HDF: Removing all existing Sour Sim data ..." );
matrixModelResults->eraseAllSourSimData();
std::vector<RigEclipseTimeStepInfo> timeStepInfos = createFilteredTimeStepInfos();
std::unique_ptr<RifHdf5ReaderInterface> hdf5ReaderInterface;
#ifdef USE_HDF5
hdf5ReaderInterface = std::unique_ptr<RifHdf5ReaderInterface>( new RifHdf5Reader( fileName ) );
#endif // USE_HDF5
if ( !hdf5ReaderInterface )
{
return;
}
std::vector<QDateTime> sourSimTimeSteps = hdf5ReaderInterface->timeSteps();
if ( sourSimTimeSteps.size() == 0 )
{
RiaLogging::error( "HDF: No data available from SourSim" );
return;
}
if ( timeStepInfos.size() > 0 )
{
if ( allTimeSteps().size() != sourSimTimeSteps.size() )
{
RiaLogging::error( QString( "HDF: Time step count mismatch, Eclipse : %1 ; HDF : %2 " )
.arg( allTimeSteps().size() )
.arg( sourSimTimeSteps.size() ) );
return;
}
bool isTimeStampsEqual = true;
for ( size_t i = 0; i < timeStepInfos.size(); i++ )
{
size_t indexOnFile = timeStepIndexOnFile( i );
if ( indexOnFile < sourSimTimeSteps.size() )
{
if ( !isEclipseAndSoursimTimeStepsEqual( timeStepInfos[i].m_date, sourSimTimeSteps[indexOnFile] ) )
{
isTimeStampsEqual = false;
}
}
else
{
RiaLogging::error( QString( "HDF: Time step count mismatch, Eclipse : %1 ; HDF : %2 " )
.arg( timeStepInfos.size() )
.arg( sourSimTimeSteps.size() ) );
// We have less soursim time steps than eclipse time steps
isTimeStampsEqual = false;
}
}
if ( !isTimeStampsEqual ) return;
}
else
{
// Use time steps from HDF to define the time steps
QDateTime firstDate = sourSimTimeSteps[0];
std::vector<double> daysSinceSimulationStart;
for ( auto d : sourSimTimeSteps )
{
daysSinceSimulationStart.push_back( firstDate.daysTo( d ) );
}
std::vector<int> reportNumbers;
if ( m_dynamicResultsAccess.notNull() )
{
reportNumbers = m_dynamicResultsAccess->reportNumbers();
}
else
{
for ( size_t i = 0; i < sourSimTimeSteps.size(); i++ )
{
reportNumbers.push_back( static_cast<int>( i ) );
}
}
timeStepInfos =
RigEclipseTimeStepInfo::createTimeStepInfos( sourSimTimeSteps, reportNumbers, daysSinceSimulationStart );
}
QStringList resultNames = hdf5ReaderInterface->propertyNames();
for ( int i = 0; i < resultNames.size(); ++i )
{
RigEclipseResultAddress resAddr( RiaDefines::ResultCatType::SOURSIMRL, resultNames[i] );
matrixModelResults->createResultEntry( resAddr, false );
matrixModelResults->setTimeStepInfos( resAddr, timeStepInfos );
}
m_hdfReaderInterface = std::move( hdf5ReaderInterface );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::setFileDataAccess( RifEclipseRestartDataAccess* restartDataAccess )
{
m_dynamicResultsAccess = restartDataAccess;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const size_t* RifReaderEclipseOutput::eclipseCellIndexMapping()
{
return cellMappingECLRi;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::importFaults( const QStringList& fileSet, cvf::Collection<RigFault>* faults )
{
if ( this->filenamesWithFaults().size() > 0 )
{
for ( size_t i = 0; i < this->filenamesWithFaults().size(); i++ )
{
QString faultFilename = this->filenamesWithFaults()[i];
RifEclipseInputFileTools::parseAndReadFaults( faultFilename, faults );
}
}
else
{
foreach ( QString fname, fileSet )
{
if ( fname.endsWith( ".DATA" ) )
{
std::vector<QString> filenamesWithFaults;
RifEclipseInputFileTools::readFaultsInGridSection( fname,
faults,
&filenamesWithFaults,
faultIncludeFileAbsolutePathPrefix() );
std::sort( filenamesWithFaults.begin(), filenamesWithFaults.end() );
std::vector<QString>::iterator last = std::unique( filenamesWithFaults.begin(), filenamesWithFaults.end() );
filenamesWithFaults.erase( last, filenamesWithFaults.end() );
this->setFilenamesWithFaults( filenamesWithFaults );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::importEquilData( const QString& deckFileName,
const QString& includeStatementAbsolutePathPrefix,
RigEclipseCaseData* eclipseCase )
{
QFile data( deckFileName );
if ( data.open( QFile::ReadOnly ) )
{
const QString keyword( "EQUIL" );
const QString keywordToStopParsing( "SCHEDULE" );
const qint64 startPositionInFile = 0;
std::vector<std::pair<QString, QString>> pathAliasDefinitions;
QStringList keywordContent;
std::vector<QString> fileNamesContainingKeyword;
bool isStopParsingKeywordDetected = false;
RifEclipseInputFileTools::readKeywordAndParseIncludeStatementsRecursively( keyword,
keywordToStopParsing,
data,
startPositionInFile,
pathAliasDefinitions,
&keywordContent,
&fileNamesContainingKeyword,
&isStopParsingKeywordDetected,
includeStatementAbsolutePathPrefix );
std::vector<RigEquil> equilItems;
for ( const auto& s : keywordContent )
{
RigEquil equilRec = RigEquil::parseString( s );
equilItems.push_back( equilRec );
}
eclipseCase->setEquilData( equilItems );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferStaticNNCData( const ecl_grid_type* mainEclGrid,
ecl_file_type* init_file,
RigMainGrid* mainGrid )
{
if ( !m_ecl_init_file ) return;
CVF_ASSERT( mainEclGrid && mainGrid );
// Get the data from ERT
ecl_nnc_geometry_type* nnc_geo = ecl_nnc_geometry_alloc( mainEclGrid );
if ( nnc_geo )
{
ecl_nnc_data_type* tran_data =
ecl_nnc_data_alloc_tran( mainEclGrid, nnc_geo, ecl_file_get_global_view( init_file ) );
if ( tran_data )
{
int numNNC = ecl_nnc_data_get_size( tran_data );
int geometrySize = ecl_nnc_geometry_size( nnc_geo );
CVF_ASSERT( numNNC == geometrySize );
if ( numNNC > 0 )
{
// Transform to our own data structures
RigConnectionContainer nncConnections;
std::vector<double> transmissibilityValuesTemp;
const double* transValues = ecl_nnc_data_get_values( tran_data );
for ( int nIdx = 0; nIdx < numNNC; ++nIdx )
{
const ecl_nnc_pair_type* geometry_pair = ecl_nnc_geometry_iget( nnc_geo, nIdx );
RigGridBase* grid1 = mainGrid->gridByIndex( geometry_pair->grid_nr1 );
RigGridBase* grid2 = mainGrid->gridByIndex( geometry_pair->grid_nr2 );
RigConnection nncConnection( grid1->reservoirCellIndex( geometry_pair->global_index1 ),
grid2->reservoirCellIndex( geometry_pair->global_index2 ) );
nncConnections.push_back( nncConnection );
transmissibilityValuesTemp.push_back( transValues[nIdx] );
}
mainGrid->nncData()->setNativeConnections( nncConnections );
mainGrid->nncData()->makeScalarResultAndSetValues( RiaDefines::propertyNameCombTrans(),
transmissibilityValuesTemp );
}
ecl_nnc_data_free( tran_data );
}
ecl_nnc_geometry_free( nnc_geo );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferDynamicNNCData( const ecl_grid_type* mainEclGrid, RigMainGrid* mainGrid )
{
CVF_ASSERT( mainEclGrid && mainGrid );
if ( m_dynamicResultsAccess.isNull() ) return;
size_t timeStepCount = m_dynamicResultsAccess->timeStepCount();
std::vector<std::vector<double>>& waterFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxWat(), timeStepCount );
std::vector<std::vector<double>>& oilFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxOil(), timeStepCount );
std::vector<std::vector<double>>& gasFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxGas(), timeStepCount );
for ( size_t timeStep = 0; timeStep < timeStepCount; ++timeStep )
{
m_dynamicResultsAccess->dynamicNNCResults( mainEclGrid,
timeStep,
&waterFluxData[timeStep],
&oilFluxData[timeStep],
&gasFluxData[timeStep] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::openAndReadActiveCellData( const QString& fileName,
const std::vector<QDateTime>& mainCaseTimeSteps,
RigEclipseCaseData* eclipseCase )
{
CVF_ASSERT( eclipseCase );
// It is required to have a main grid before reading active cell data
if ( !eclipseCase->mainGrid() )
{
return false;
}
// Get set of files
QStringList fileSet;
if ( !RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName( fileName, &fileSet ) ) return false;
// Keep the set of files of interest
m_filesWithSameBaseName = fileSet;
m_eclipseCase = eclipseCase;
m_fileName = fileName;
if ( !readActiveCellInfo() )
{
return false;
}
ensureDynamicResultAccessIsPresent();
if ( m_dynamicResultsAccess.notNull() )
{
m_dynamicResultsAccess->setTimeSteps( mainCaseTimeSteps );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
/// See also RigStatistics::computeActiveCellUnion()
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::readActiveCellInfo()
{
CVF_ASSERT( m_eclipseCase );
CVF_ASSERT( m_eclipseCase->mainGrid() );
std::vector<std::vector<int>> actnumValuesPerGrid;
{
// If INIT file is present and PORV is found, use PORV as basis for active cells
QString initFileName = RifEclipseOutputFileTools::firstFileNameOfType( m_filesWithSameBaseName, ECL_INIT_FILE );
if ( initFileName.size() > 0 )
{
ecl_file_type* ecl_file =
ecl_file_open( RiaStringEncodingTools::toNativeEncoded( initFileName ).data(), ECL_FILE_CLOSE_STREAM );
if ( ecl_file )
{
bool isDualPorosity = m_eclipseCase->mainGrid()->isDualPorosity();
actnumValuesPerGrid = RifActiveCellsReader::activeCellsFromPorvKeyword( ecl_file, isDualPorosity );
ecl_file_close( ecl_file );
}
}
}
if ( actnumValuesPerGrid.empty() )
{
// Try ACTNUM from grid file as basis for active cells
QString egridFileName = RifEclipseOutputFileTools::firstFileNameOfType( m_filesWithSameBaseName, ECL_EGRID_FILE );
if ( egridFileName.size() > 0 )
{
ecl_file_type* ecl_file =
ecl_file_open( RiaStringEncodingTools::toNativeEncoded( egridFileName ).data(), ECL_FILE_CLOSE_STREAM );
if ( ecl_file )
{
actnumValuesPerGrid = RifActiveCellsReader::activeCellsFromActnumKeyword( ecl_file );
ecl_file_close( ecl_file );
}
}
}
size_t reservoirCellCount = 0;
for ( const auto& actnumValues : actnumValuesPerGrid )
{
reservoirCellCount += actnumValues.size();
}
// Check if number of cells is matching
if ( m_eclipseCase->mainGrid()->globalCellArray().size() != reservoirCellCount )
{
return false;
}
RigActiveCellInfo* activeCellInfo = m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
RigActiveCellInfo* fractureActiveCellInfo =
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL );
activeCellInfo->setReservoirCellCount( reservoirCellCount );
fractureActiveCellInfo->setReservoirCellCount( reservoirCellCount );
activeCellInfo->setGridCount( actnumValuesPerGrid.size() );
fractureActiveCellInfo->setGridCount( actnumValuesPerGrid.size() );
size_t cellIdx = 0;
size_t globalActiveMatrixIndex = 0;
size_t globalActiveFractureIndex = 0;
for ( size_t gridIndex = 0; gridIndex < actnumValuesPerGrid.size(); gridIndex++ )
{
size_t activeMatrixIndex = 0;
size_t activeFractureIndex = 0;
std::vector<int>& actnumValues = actnumValuesPerGrid[gridIndex];
for ( int actnumValue : actnumValues )
{
if ( actnumValue == 1 || actnumValue == 3 )
{
activeCellInfo->setCellResultIndex( cellIdx, globalActiveMatrixIndex++ );
activeMatrixIndex++;
}
if ( actnumValue == 2 || actnumValue == 3 )
{
fractureActiveCellInfo->setCellResultIndex( cellIdx, globalActiveFractureIndex++ );
activeFractureIndex++;
}
cellIdx++;
}
activeCellInfo->setGridActiveCellCounts( gridIndex, activeMatrixIndex );
fractureActiveCellInfo->setGridActiveCellCounts( gridIndex, activeFractureIndex );
}
activeCellInfo->computeDerivedData();
fractureActiveCellInfo->computeDerivedData();
return true;
}
//--------------------------------------------------------------------------------------------------
/// Build meta data - get states and results info
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::buildMetaData( ecl_grid_type* grid )
{
CVF_ASSERT( m_eclipseCase );
CVF_ASSERT( m_filesWithSameBaseName.size() > 0 );
caf::ProgressInfo progInfo( m_filesWithSameBaseName.size() + 3, "" );
progInfo.setNextProgressIncrement( m_filesWithSameBaseName.size() );
RigCaseCellResultsData* matrixModelResults = m_eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
RigCaseCellResultsData* fractureModelResults = m_eclipseCase->results( RiaDefines::PorosityModelType::FRACTURE_MODEL );
std::vector<RigEclipseTimeStepInfo> timeStepInfos;
// Create access object for dynamic results
ensureDynamicResultAccessIsPresent();
if ( m_dynamicResultsAccess.notNull() )
{
m_dynamicResultsAccess->open();
progInfo.incrementProgress();
timeStepInfos = createFilteredTimeStepInfos();
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
m_dynamicResultsAccess->resultNames( &resultNames, &resultNamesDataItemCounts );
{
QStringList matrixResultNames =
validKeywordsForPorosityModel( resultNames,
resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL ),
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL ),
RiaDefines::PorosityModelType::MATRIX_MODEL,
m_dynamicResultsAccess->timeStepCount() );
for ( int i = 0; i < matrixResultNames.size(); ++i )
{
RigEclipseResultAddress resAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, matrixResultNames[i] );
matrixModelResults->createResultEntry( resAddr, false );
matrixModelResults->setTimeStepInfos( resAddr, timeStepInfos );
}
}
{
QStringList fractureResultNames =
validKeywordsForPorosityModel( resultNames,
resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL ),
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL ),
RiaDefines::PorosityModelType::FRACTURE_MODEL,
m_dynamicResultsAccess->timeStepCount() );
for ( int i = 0; i < fractureResultNames.size(); ++i )
{
RigEclipseResultAddress resAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, fractureResultNames[i] );
fractureModelResults->createResultEntry( resAddr, false );
fractureModelResults->setTimeStepInfos( resAddr, timeStepInfos );
}
}
}
progInfo.incrementProgress();
openInitFile();
// Unit system
{
// Default units type is METRIC
RiaDefines::EclipseUnitSystem unitsType = RiaDefines::EclipseUnitSystem::UNITS_METRIC;
int unitsTypeValue;
if ( m_dynamicResultsAccess.notNull() )
{
unitsTypeValue = m_dynamicResultsAccess->readUnitsType();
}
else
{
if ( m_ecl_init_file )
{
unitsTypeValue = RifEclipseOutputFileTools::readUnitsType( m_ecl_init_file );
}
else
{
unitsTypeValue = ecl_grid_get_unit_system( grid );
}
}
if ( unitsTypeValue == 2 )
{
unitsType = RiaDefines::EclipseUnitSystem::UNITS_FIELD;
}
else if ( unitsTypeValue == 3 )
{
unitsType = RiaDefines::EclipseUnitSystem::UNITS_LAB;
}
m_eclipseCase->setUnitsType( unitsType );
}
progInfo.incrementProgress();
if ( m_ecl_init_file )
{
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
std::vector<ecl_file_type*> filesUsedToFindAvailableKeywords;
filesUsedToFindAvailableKeywords.push_back( m_ecl_init_file );
RifEclipseOutputFileTools::findKeywordsAndItemCount( filesUsedToFindAvailableKeywords,
&resultNames,
&resultNamesDataItemCounts );
std::vector<RigEclipseTimeStepInfo> staticTimeStepInfo;
if ( !timeStepInfos.empty() )
{
staticTimeStepInfo.push_back( timeStepInfos.front() );
}
{
QStringList matrixResultNames =
validKeywordsForPorosityModel( resultNames,
resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL ),
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL ),
RiaDefines::PorosityModelType::MATRIX_MODEL,
1 );
// Add ACTNUM
matrixResultNames += "ACTNUM";
for ( int i = 0; i < matrixResultNames.size(); ++i )
{
RigEclipseResultAddress resAddr( RiaDefines::ResultCatType::STATIC_NATIVE, matrixResultNames[i] );
matrixModelResults->createResultEntry( resAddr, false );
matrixModelResults->setTimeStepInfos( resAddr, staticTimeStepInfo );
}
}
{
QStringList fractureResultNames =
validKeywordsForPorosityModel( resultNames,
resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL ),
m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL ),
RiaDefines::PorosityModelType::FRACTURE_MODEL,
1 );
// Add ACTNUM
fractureResultNames += "ACTNUM";
for ( int i = 0; i < fractureResultNames.size(); ++i )
{
RigEclipseResultAddress resAddr( RiaDefines::ResultCatType::STATIC_NATIVE, fractureResultNames[i] );
fractureModelResults->createResultEntry( resAddr, false );
fractureModelResults->setTimeStepInfos( resAddr, staticTimeStepInfo );
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// Create results access object (.UNRST or .X0001 ... .XNNNN)
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::ensureDynamicResultAccessIsPresent()
{
if ( m_dynamicResultsAccess.isNull() )
{
m_dynamicResultsAccess = RifEclipseOutputFileTools::createDynamicResultAccess( m_fileName );
}
}
//--------------------------------------------------------------------------------------------------
/// Get all values of a given static result as doubles
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::staticResult( const QString& result,
RiaDefines::PorosityModelType matrixOrFracture,
std::vector<double>* values )
{
CVF_ASSERT( values );
if ( result.compare( "ACTNUM", Qt::CaseInsensitive ) == 0 )
{
RigActiveCellInfo* activeCellInfo = m_eclipseCase->activeCellInfo( matrixOrFracture );
values->resize( activeCellInfo->reservoirActiveCellCount(), 1.0 );
return true;
}
openInitFile();
if ( m_ecl_init_file )
{
std::vector<double> fileValues;
size_t numOccurrences = ecl_file_get_num_named_kw( m_ecl_init_file, result.toLatin1().data() );
size_t i;
for ( i = 0; i < numOccurrences; i++ )
{
std::vector<double> partValues;
RifEclipseOutputFileTools::keywordData( m_ecl_init_file, result, i, &partValues );
fileValues.insert( fileValues.end(), partValues.begin(), partValues.end() );
}
extractResultValuesBasedOnPorosityModel( matrixOrFracture, values, fileValues );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::sourSimRlResult( const QString& result, size_t stepIndex, std::vector<double>* values )
{
values->clear();
if ( !m_hdfReaderInterface ) return;
if ( m_eclipseCase->mainGrid()->gridCount() == 0 )
{
RiaLogging::error( "No grids available" );
return;
}
size_t activeCellCount = cvf::UNDEFINED_SIZE_T;
{
RigActiveCellInfo* fracActCellInfo = m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
fracActCellInfo->gridActiveCellCounts( 0, activeCellCount );
}
size_t fileIndex = timeStepIndexOnFile( stepIndex );
m_hdfReaderInterface->dynamicResult( result, fileIndex, values );
if ( activeCellCount != values->size() )
{
values->clear();
RiaLogging::error( "SourSimRL results does not match the number of active cells in the grid" );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QDateTime> RifReaderEclipseOutput::allTimeSteps() const
{
std::vector<QDateTime> steps;
if ( m_dynamicResultsAccess.notNull() )
{
std::vector<double> dymmy;
m_dynamicResultsAccess->timeSteps( &steps, &dymmy );
}
return steps;
}
//--------------------------------------------------------------------------------------------------
/// Get dynamic result at given step index. Will concatenate values for the main grid and all sub grids.
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::dynamicResult( const QString& result,
RiaDefines::PorosityModelType matrixOrFracture,
size_t stepIndex,
std::vector<double>* values )
{
ensureDynamicResultAccessIsPresent();
if ( m_dynamicResultsAccess.notNull() )
{
size_t indexOnFile = timeStepIndexOnFile( stepIndex );
std::vector<double> fileValues;
if ( !m_dynamicResultsAccess->results( result, indexOnFile, m_eclipseCase->mainGrid()->gridCountOnFile(), &fileValues ) )
{
return false;
}
extractResultValuesBasedOnPorosityModel( matrixOrFracture, values, fileValues );
}
return true;
}
//--------------------------------------------------------------------------------------------------
/// Helper struct to store info on how a well-to-grid connection contributes to the position of
/// well segments without any connections.
//--------------------------------------------------------------------------------------------------
struct SegmentPositionContribution
{
SegmentPositionContribution( int connectionSegmentId,
cvf::Vec3d connectionPosition,
double lengthFromConnection,
bool isInsolating,
int segmentIdUnder,
int segmentIdAbove,
bool isFromAbove )
: m_connectionSegmentId( connectionSegmentId )
, m_lengthFromConnection( lengthFromConnection )
, m_isInsolating( isInsolating )
, m_connectionPosition( connectionPosition )
, m_segmentIdUnder( segmentIdUnder )
, m_segmentIdAbove( segmentIdAbove )
, m_isFromAbove( isFromAbove )
{
}
int m_connectionSegmentId;
double m_lengthFromConnection;
bool m_isInsolating;
cvf::Vec3d m_connectionPosition;
int m_segmentIdUnder;
int m_segmentIdAbove;
bool m_isFromAbove;
};
size_t localGridCellIndexFromErtConnection( const RigGridBase* grid,
const well_conn_type* ert_connection,
const char* wellNameForErrorMsgs )
{
CVF_ASSERT( ert_connection );
CVF_ASSERT( grid );
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
// If a well is defined in fracture region, the K-value is from (cellCountK - 1) -> cellCountK*2 - 1
// Adjust K so index is always in valid grid region
if ( cellK >= static_cast<int>( grid->cellCountK() ) )
{
cellK -= static_cast<int>( grid->cellCountK() );
}
// See description for keyword ICON at page 54/55 of Rile Formats Reference Manual 2010.2
/*
Integer completion data array
ICON(NICONZ,NCWMAX,NWELLS) with dimensions
defined by INTEHEAD. The following items are required for each completion in each well:
Item 1 - Well connection index ICON(1,IC,IWELL) = IC (set to -IC if connection is not in current LGR)
Item 2 - I-coordinate (<= 0 if not in this LGR)
Item 3 - J-coordinate (<= 0 if not in this LGR)
Item 4 - K-coordinate (<= 0 if not in this LGR)
Item 6 - Connection status > 0 open, <= 0 shut
Item 14 - Penetration direction (1=x, 2=y, 3=z, 4=fractured in x-direction, 5=fractured in y-direction)
If undefined or zero, assume Z
Item 15 - Segment number containing connection (for multi-segment wells, =0 for ordinary wells)
Undefined items in this array may be set to zero.
*/
// The K value might also be -1. It is not yet known why, or what it is supposed to mean,
// but for now we will interpret as 0.
// TODO: Ask Joakim Haave regarding this.
if ( cellK < 0 )
{
// cvf::Trace::show("Well Connection for grid " + cvf::String(grid->gridName()) + "\n - Detected negative K
// value (K=" + cvf::String(cellK) + ") for well : " + cvf::String(wellName) + " K clamped to 0");
cellK = 0;
}
// Introduced based on discussion with H<>kon H<>gst<73>l 08.09.2016
if ( cellK >= static_cast<int>( grid->cellCountK() ) )
{
int maxCellK = static_cast<int>( grid->cellCountK() );
if ( wellNameForErrorMsgs )
{
cvf::Trace::show( "Well Connection for grid " + cvf::String( grid->gridName() ) +
"\n - Ignored connection with invalid K value (K=" + cvf::String( cellK ) + ", max K = " +
cvf::String( maxCellK ) + ") for well : " + cvf::String( wellNameForErrorMsgs ) );
}
return cvf::UNDEFINED_SIZE_T;
}
return grid->cellIndexFromIJK( cellI, cellJ, cellK );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultPoint RifReaderEclipseOutput::createWellResultPoint( const RigGridBase* grid,
const well_conn_type* ert_connection,
int ertBranchId,
int ertSegmentId,
const char* wellName )
{
CVF_ASSERT( ert_connection );
CVF_ASSERT( grid );
size_t gridCellIndex = localGridCellIndexFromErtConnection( grid, ert_connection, wellName );
bool isCellOpen = well_conn_open( ert_connection );
double volumeRate = well_conn_get_volume_rate( ert_connection );
double oilRate = well_conn_get_oil_rate( ert_connection );
double gasRate = well_conn_get_gas_rate( ert_connection );
double waterRate = well_conn_get_water_rate( ert_connection );
double connectionFactor = well_conn_get_connection_factor( ert_connection );
RigWellResultPoint resultPoint;
if ( gridCellIndex != cvf::UNDEFINED_SIZE_T )
{
resultPoint.m_gridIndex = grid->gridIndex();
resultPoint.m_gridCellIndex = gridCellIndex;
resultPoint.m_isOpen = isCellOpen;
resultPoint.m_ertBranchId = ertBranchId;
resultPoint.m_ertSegmentId = ertSegmentId;
resultPoint.m_flowRate = volumeRate;
resultPoint.m_oilRate = oilRate;
resultPoint.m_waterRate = waterRate;
resultPoint.m_gasRate =
RiaEclipseUnitTools::convertSurfaceGasFlowRateToOilEquivalents( m_eclipseCase->unitsType(), gasRate );
resultPoint.m_connectionFactor = connectionFactor;
}
return resultPoint;
}
//--------------------------------------------------------------------------------------------------
/// Inverse distance interpolation of the supplied points and distance weights for
/// the contributing points which are closest above, and closest below
//--------------------------------------------------------------------------------------------------
cvf::Vec3d interpolate3DPosition( const std::vector<SegmentPositionContribution>& positions )
{
std::vector<SegmentPositionContribution> filteredPositions;
filteredPositions.reserve( positions.size() );
double minDistFromContribAbove = HUGE_VAL;
double minDistFromContribBelow = HUGE_VAL;
std::vector<SegmentPositionContribution> contrFromAbove;
std::vector<SegmentPositionContribution> contrFromBelow;
for ( size_t i = 0; i < positions.size(); i++ )
{
if ( positions[i].m_connectionPosition != cvf::Vec3d::UNDEFINED )
{
if ( positions[i].m_isFromAbove && positions[i].m_lengthFromConnection < minDistFromContribAbove )
{
if ( contrFromAbove.size() )
contrFromAbove[0] = positions[i];
else
contrFromAbove.push_back( positions[i] );
minDistFromContribAbove = positions[i].m_lengthFromConnection;
}
if ( !positions[i].m_isFromAbove && positions[i].m_lengthFromConnection < minDistFromContribBelow )
{
if ( contrFromBelow.size() )
contrFromBelow[0] = positions[i];
else
contrFromBelow.push_back( positions[i] );
minDistFromContribBelow = positions[i].m_lengthFromConnection;
}
}
}
filteredPositions = contrFromAbove;
filteredPositions.insert( filteredPositions.end(), contrFromBelow.begin(), contrFromBelow.end() );
std::vector<double> nominators( filteredPositions.size(), 0.0 );
double denominator = 0.0;
cvf::Vec3d interpolatedValue = cvf::Vec3d::ZERO;
for ( size_t i = 0; i < filteredPositions.size(); i++ )
{
#if 0 // Pure average test
nominators[i] = 1.0;
#else
double distance = filteredPositions[i].m_lengthFromConnection;
if ( distance < 1e-6 )
{
return filteredPositions[i].m_connectionPosition;
}
else if ( distance < 1.0 )
{
// distance = 1.0;
}
distance = 1.0 / distance;
nominators[i] = distance;
denominator += distance;
#endif
}
#if 0 // Pure average test
denominator = positions.size(); // Pure average test
#endif
for ( size_t i = 0; i < filteredPositions.size(); i++ )
{
interpolatedValue += ( nominators[i] / denominator ) * filteredPositions[i].m_connectionPosition;
}
return interpolatedValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void propagatePosContribDownwards( std::map<int, std::vector<SegmentPositionContribution>>& segmentIdToPositionContrib,
const well_segment_collection_type* allErtSegments,
int ertSegmentId,
std::vector<SegmentPositionContribution> posContrib )
{
std::map<int, std::vector<SegmentPositionContribution>>::iterator posContribIt;
posContribIt = segmentIdToPositionContrib.find( ertSegmentId );
if ( posContribIt != segmentIdToPositionContrib.end() )
{
// Create a set of the segments below this, that has to be followed.
std::set<int> segmentIdsBelow;
for ( size_t i = 0; i < posContribIt->second.size(); ++i )
{
segmentIdsBelow.insert( posContribIt->second[i].m_segmentIdUnder );
}
// Get the segment length to add to the contributions
well_segment_type* segment = well_segment_collection_get( allErtSegments, posContribIt->first );
double sementLength = well_segment_get_length( segment );
// If we do not have the contribution represented, add it, and accumulate the length
// If it is already present, do not touch
for ( size_t i = 0; i < posContrib.size(); ++i )
{
bool foundContribution = false;
for ( size_t j = 0; j < posContribIt->second.size(); ++j )
{
if ( posContribIt->second[j].m_connectionSegmentId == posContrib[i].m_connectionSegmentId )
{
foundContribution = true;
break;
}
}
if ( !foundContribution )
{
posContrib[i].m_lengthFromConnection += sementLength;
posContrib[i].m_isFromAbove = true;
posContribIt->second.push_back( posContrib[i] );
}
posContrib[i].m_segmentIdAbove = ertSegmentId;
}
for ( std::set<int>::iterator it = segmentIdsBelow.begin(); it != segmentIdsBelow.end(); ++it )
{
propagatePosContribDownwards( segmentIdToPositionContrib, allErtSegments, ( *it ), posContrib );
}
}
}
//--------------------------------------------------------------------------------------------------
/// Helper class to determine whether a well connection is present in a sub cell
// for a specific well. Connections must be tested from innermost lgr to outermost since
// it accumulates the outer cells having subcell connections as it goes.
//--------------------------------------------------------------------------------------------------
class WellResultPointHasSubCellConnectionCalculator
{
public:
explicit WellResultPointHasSubCellConnectionCalculator( const RigMainGrid* mainGrid, well_state_type* ert_well_state )
: m_mainGrid( mainGrid )
{
int lastGridNr = static_cast<int>( m_mainGrid->gridCountOnFile() ) - 1;
for ( int gridNr = lastGridNr; gridNr >= 0; --gridNr )
{
const well_conn_type* ert_wellhead = well_state_iget_wellhead( ert_well_state, static_cast<int>( gridNr ) );
if ( ert_wellhead )
{
size_t localGridCellidx =
localGridCellIndexFromErtConnection( m_mainGrid->gridByIndex( gridNr ), ert_wellhead, nullptr );
this->insertTheParentCells( gridNr, localGridCellidx );
}
std::string gridname = gridNr == 0 ? ECL_GRID_GLOBAL_GRID : m_mainGrid->gridByIndex( gridNr )->gridName();
const well_conn_collection_type* connections =
well_state_get_grid_connections( ert_well_state, gridname.data() );
if ( connections )
{
int connectionCount = well_conn_collection_get_size( connections );
if ( connectionCount )
{
for ( int connIdx = 0; connIdx < connectionCount; connIdx++ )
{
well_conn_type* ert_connection = well_conn_collection_iget( connections, connIdx );
size_t localGridCellidx = localGridCellIndexFromErtConnection( m_mainGrid->gridByIndex( gridNr ),
ert_connection,
nullptr );
this->insertTheParentCells( gridNr, localGridCellidx );
}
}
}
}
}
bool hasSubCellConnection( const RigWellResultPoint& wellResultPoint )
{
if ( !wellResultPoint.isCell() ) return false;
size_t gridIndex = wellResultPoint.m_gridIndex;
size_t gridCellIndex = wellResultPoint.m_gridCellIndex;
size_t reservoirCellIdx = m_mainGrid->reservoirCellIndexByGridAndGridLocalCellIndex( gridIndex, gridCellIndex );
if ( m_gridCellsWithSubCellWellConnections.count( reservoirCellIdx ) )
{
return true;
}
else
{
return false;
}
}
private:
void insertTheParentCells( size_t gridIndex, size_t gridCellIndex )
{
if ( gridCellIndex == cvf::UNDEFINED_SIZE_T ) return;
// Traverse parent gridcells, and add them to the map
while ( gridIndex > 0 ) // is lgr
{
const RigCell& connectionCell = m_mainGrid->cellByGridAndGridLocalCellIdx( gridIndex, gridCellIndex );
RigGridBase* hostGrid = connectionCell.hostGrid();
RigLocalGrid* lgrHost = static_cast<RigLocalGrid*>( hostGrid );
gridIndex = lgrHost->parentGrid()->gridIndex();
gridCellIndex = connectionCell.parentCellIndex();
size_t parentReservoirCellIdx =
m_mainGrid->reservoirCellIndexByGridAndGridLocalCellIndex( gridIndex, gridCellIndex );
m_gridCellsWithSubCellWellConnections.insert( parentReservoirCellIdx );
}
}
std::set<size_t> m_gridCellsWithSubCellWellConnections;
const RigMainGrid* m_mainGrid;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::readWellCells( const ecl_grid_type* mainEclGrid, bool importCompleteMswData )
{
CVF_ASSERT( m_eclipseCase );
if ( m_dynamicResultsAccess.isNull() ) return;
well_info_type* ert_well_info = well_info_alloc( mainEclGrid );
if ( !ert_well_info ) return;
m_dynamicResultsAccess->readWellData( ert_well_info, importCompleteMswData );
std::vector<double> daysSinceSimulationStart;
std::vector<QDateTime> timeSteps;
m_dynamicResultsAccess->timeSteps( &timeSteps, &daysSinceSimulationStart );
std::vector<int> reportNumbers = m_dynamicResultsAccess->reportNumbers();
bool sameCount = false;
if ( timeSteps.size() == reportNumbers.size() )
{
sameCount = true;
}
std::vector<RigGridBase*> grids;
m_eclipseCase->allGrids( &grids );
cvf::Collection<RigSimWellData> wells;
caf::ProgressInfo progress( well_info_get_num_wells( ert_well_info ), "" );
int wellIdx;
for ( wellIdx = 0; wellIdx < well_info_get_num_wells( ert_well_info ); wellIdx++ )
{
const char* wellName = well_info_iget_well_name( ert_well_info, wellIdx );
CVF_ASSERT( wellName );
cvf::ref<RigSimWellData> simWellData = new RigSimWellData;
simWellData->m_wellName = wellName;
well_ts_type* ert_well_time_series = well_info_get_ts( ert_well_info, wellName );
int timeStepCount = well_ts_get_size( ert_well_time_series );
simWellData->m_wellCellsTimeSteps.resize( timeStepCount );
int timeIdx;
for ( timeIdx = 0; timeIdx < timeStepCount; timeIdx++ )
{
well_state_type* ert_well_state = well_ts_iget_state( ert_well_time_series, timeIdx );
RigWellResultFrame& wellResFrame = simWellData->m_wellCellsTimeSteps[timeIdx];
// Build timestamp for well
bool haveFoundTimeStamp = false;
if ( sameCount )
{
int reportNr = well_state_get_report_nr( ert_well_state );
for ( size_t i = 0; i < reportNumbers.size(); i++ )
{
if ( reportNumbers[i] == reportNr )
{
wellResFrame.m_timestamp = timeSteps[i];
haveFoundTimeStamp = true;
}
}
}
if ( !haveFoundTimeStamp )
{
// This fallback will not work for timesteps before 1970.
// Also see RifEclipseOutputFileAccess::timeStepsText for accessing time_t structures
time_t stepTime = well_state_get_sim_time( ert_well_state );
wellResFrame.m_timestamp = QDateTime::fromSecsSinceEpoch( stepTime );
}
// Production type
well_type_enum ert_well_type = well_state_get_type( ert_well_state );
if ( ert_well_type == ECL_WELL_PRODUCER )
{
wellResFrame.m_productionType = RiaDefines::WellProductionType::PRODUCER;
}
else if ( ert_well_type == ECL_WELL_WATER_INJECTOR )
{
wellResFrame.m_productionType = RiaDefines::WellProductionType::WATER_INJECTOR;
}
else if ( ert_well_type == ECL_WELL_GAS_INJECTOR )
{
wellResFrame.m_productionType = RiaDefines::WellProductionType::GAS_INJECTOR;
}
else if ( ert_well_type == ECL_WELL_OIL_INJECTOR )
{
wellResFrame.m_productionType = RiaDefines::WellProductionType::OIL_INJECTOR;
}
else
{
wellResFrame.m_productionType = RiaDefines::WellProductionType::UNDEFINED_PRODUCTION_TYPE;
}
wellResFrame.m_isOpen = well_state_is_open( ert_well_state );
if ( importCompleteMswData && well_state_is_MSW( ert_well_state ) )
{
simWellData->setMultiSegmentWell( true );
// how do we handle LGR-s ?
// 1. Create separate visual branches for each Grid, with its own wellhead
// 2. Always use the connections to the grid with the highest number (innermost LGR).
// 3. Handle both and switch between them according to visual settings of grid visualization
// Will there ever exist connections to different grids for the same segment ?
// We have currently selected 2.
// Set the wellhead
int lastGridNr = static_cast<int>( grids.size() ) - 1;
for ( int gridNr = lastGridNr; gridNr >= 0; --gridNr )
{
// If several grids have a wellhead definition for this well, we use the last one.
// (Possibly the innermost LGR)
const well_conn_type* ert_wellhead =
well_state_iget_wellhead( ert_well_state, static_cast<int>( gridNr ) );
if ( ert_wellhead )
{
wellResFrame.m_wellHead = createWellResultPoint( grids[gridNr], ert_wellhead, -1, -1, wellName );
// HACK: Ert returns open as "this is equally wrong as closed for well heads".
// Well heads are not open jfr mail communication with HHGS and JH Statoil 07.01.2016
wellResFrame.m_wellHead.m_isOpen = false;
break;
}
}
well_branch_collection_type* branches = well_state_get_branches( ert_well_state );
int branchCount = well_branch_collection_get_size( branches );
wellResFrame.m_wellResultBranches.resize( branchCount );
std::map<int, std::vector<SegmentPositionContribution>> segmentIdToPositionContrib;
std::vector<int> upperSegmentIdsOfUnpositionedSegementGroup;
// For each branch, go from bottom segment upwards and transfer their connections to WellResultpoints.
// If they have no connections, create a resultpoint representing their bottom position, which will
// receive an actual position at a later stage.
// I addition, distribute contributions for calculating segment bottom positions from bottom and up.
for ( int bIdx = 0; bIdx < well_branch_collection_get_size( branches ); bIdx++ )
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[bIdx];
const well_segment_type* segment = well_branch_collection_iget_start_segment( branches, bIdx );
int branchId = well_segment_get_branch_id( segment );
wellResultBranch.m_ertBranchId = branchId;
// Data for segment position calculation
int lastConnectionSegmentId = -1;
cvf::Vec3d lastConnectionPos = cvf::Vec3d::UNDEFINED;
cvf::Vec3d lastConnectionCellCorner = cvf::Vec3d::UNDEFINED;
double lastConnectionCellSize = 0;
double accLengthFromLastConnection = 0;
int segmentIdBelow = -1;
bool segmentBelowHasConnections = false;
while ( segment && branchId == well_segment_get_branch_id( segment ) )
{
// Loop backwards, making us select the connection in the innermost lgr as the truth
bool segmentHasConnections = false;
for ( int gridNr = lastGridNr; gridNr >= 0; --gridNr )
{
std::string gridName = this->ertGridName( gridNr );
// If this segment has connections in any grid, transfer the innermost ones
if ( well_segment_has_grid_connections( segment, gridName.data() ) )
{
const well_conn_collection_type* connections =
well_segment_get_connections( segment, gridName.data() );
int connectionCount = well_conn_collection_get_size( connections );
// Loop backwards to put the deepest connections first in the array. (The segments are
// also traversed deep to shallow)
for ( int connIdx = connectionCount - 1; connIdx >= 0; connIdx-- )
{
well_conn_type* ert_connection = well_conn_collection_iget( connections, connIdx );
wellResultBranch.m_branchResultPoints.push_back(
createWellResultPoint( grids[gridNr],
ert_connection,
branchId,
well_segment_get_id( segment ),
wellName ) );
}
segmentHasConnections = true;
// Prepare data for segment position calculation
well_conn_type* ert_connection = well_conn_collection_iget( connections, 0 );
RigWellResultPoint point = createWellResultPoint( grids[gridNr],
ert_connection,
branchId,
well_segment_get_id( segment ),
wellName );
lastConnectionPos = grids[gridNr]->cell( point.m_gridCellIndex ).center();
cvf::Vec3d cellVxes[8];
grids[gridNr]->cellCornerVertices( point.m_gridCellIndex, cellVxes );
lastConnectionCellCorner = cellVxes[0];
lastConnectionCellSize = ( lastConnectionPos - cellVxes[0] ).length();
lastConnectionSegmentId = well_segment_get_id( segment );
accLengthFromLastConnection = well_segment_get_length( segment ) / ( connectionCount + 1 );
if ( !segmentBelowHasConnections )
upperSegmentIdsOfUnpositionedSegementGroup.push_back( segmentIdBelow );
break; // Stop looping over grids
}
}
// If the segment did not have connections at all, we need to create a resultpoint representing
// the bottom of the segment and store it as an unpositioned segment
if ( !segmentHasConnections )
{
RigWellResultPoint data;
data.m_ertBranchId = branchId;
data.m_ertSegmentId = well_segment_get_id( segment );
wellResultBranch.m_branchResultPoints.push_back( data );
// Store data for segment position calculation
bool isAnInsolationContribution = accLengthFromLastConnection < lastConnectionCellSize;
segmentIdToPositionContrib[well_segment_get_id( segment )].push_back(
SegmentPositionContribution( lastConnectionSegmentId,
lastConnectionPos,
accLengthFromLastConnection,
isAnInsolationContribution,
segmentIdBelow,
-1,
false ) );
accLengthFromLastConnection += well_segment_get_length( segment );
}
segmentIdBelow = well_segment_get_id( segment );
segmentBelowHasConnections = segmentHasConnections;
if ( well_segment_get_outlet_id( segment ) == -1 )
{
segment = nullptr;
}
else
{
segment = well_segment_get_outlet( segment );
}
}
// Add resultpoint representing the outlet segment (bottom), if not the branch ends at the wellhead.
const well_segment_type* outletSegment = segment;
if ( outletSegment )
{
bool outletSegmentHasConnections = false;
for ( int gridNr = lastGridNr; gridNr >= 0; --gridNr )
{
std::string gridName = this->ertGridName( gridNr );
// If this segment has connections in any grid, use the deepest innermost one
if ( well_segment_has_grid_connections( outletSegment, gridName.data() ) )
{
const well_conn_collection_type* connections =
well_segment_get_connections( outletSegment, gridName.data() );
int connectionCount = well_conn_collection_get_size( connections );
// Select the deepest connection
well_conn_type* ert_connection =
well_conn_collection_iget( connections, connectionCount - 1 );
auto resultPoint = createWellResultPoint( grids[gridNr],
ert_connection,
well_segment_get_branch_id( outletSegment ),
well_segment_get_id( outletSegment ),
wellName );
// This result point is only supposed to be used to indicate connection to a parent well
// Clear all flow in this result point
resultPoint.clearAllFlow();
wellResultBranch.m_branchResultPoints.push_back( resultPoint );
outletSegmentHasConnections = true;
break; // Stop looping over grids
}
}
if ( !outletSegmentHasConnections )
{
// Store the result point
RigWellResultPoint data;
data.m_ertBranchId = well_segment_get_branch_id( outletSegment );
data.m_ertSegmentId = well_segment_get_id( outletSegment );
wellResultBranch.m_branchResultPoints.push_back( data );
// Store data for segment position calculation,
// and propagate it upwards until we meet a segment with connections
bool isAnInsolationContribution = accLengthFromLastConnection < lastConnectionCellSize;
cvf::Vec3d lastConnectionPosWOffset = lastConnectionPos;
if ( isAnInsolationContribution )
lastConnectionPosWOffset += 0.4 * ( lastConnectionCellCorner - lastConnectionPos );
segmentIdToPositionContrib[well_segment_get_id( outletSegment )].push_back(
SegmentPositionContribution( lastConnectionSegmentId,
lastConnectionPosWOffset,
accLengthFromLastConnection,
isAnInsolationContribution,
segmentIdBelow,
-1,
false ) );
/// Loop further to add this position contribution until a segment with connections is found
accLengthFromLastConnection += well_segment_get_length( outletSegment );
segmentIdBelow = well_segment_get_id( outletSegment );
const well_segment_type* aboveOutletSegment = nullptr;
if ( well_segment_get_outlet_id( outletSegment ) == -1 )
{
aboveOutletSegment = nullptr;
}
else
{
aboveOutletSegment = well_segment_get_outlet( outletSegment );
}
while ( aboveOutletSegment )
{
// Loop backwards, just because we do that the other places
bool segmentHasConnections = false;
for ( int gridNr = lastGridNr; gridNr >= 0; --gridNr )
{
std::string gridName = this->ertGridName( gridNr );
// If this segment has connections in any grid, stop traversal
if ( well_segment_has_grid_connections( aboveOutletSegment, gridName.data() ) )
{
segmentHasConnections = true;
break;
}
}
if ( !segmentHasConnections )
{
segmentIdToPositionContrib[well_segment_get_id( aboveOutletSegment )].push_back(
SegmentPositionContribution( lastConnectionSegmentId,
lastConnectionPos,
accLengthFromLastConnection,
isAnInsolationContribution,
segmentIdBelow,
-1,
false ) );
accLengthFromLastConnection += well_segment_get_length( aboveOutletSegment );
}
else
{
break; // We have found a segment with connections. We do not need to propagate
// position contributions further
}
segmentIdBelow = well_segment_get_id( aboveOutletSegment );
if ( well_segment_get_outlet_id( aboveOutletSegment ) == -1 )
{
aboveOutletSegment = nullptr;
}
else
{
aboveOutletSegment = well_segment_get_outlet( aboveOutletSegment );
}
}
}
}
else
{
// Add wellhead as result point Nope. Not Yet, but it is a good idea.
// The centerline calculations would be a bit simpler, I think.
}
// Reverse the order of the resultpoints in this branch, making the deepest come last
std::reverse( wellResultBranch.m_branchResultPoints.begin(),
wellResultBranch.m_branchResultPoints.end() );
} // End of the branch loop
// Propagate position contributions from connections above unpositioned segments downwards
well_segment_collection_type* allErtSegments = well_state_get_segments( ert_well_state );
for ( size_t bIdx = 0; bIdx < wellResFrame.m_wellResultBranches.size(); ++bIdx )
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[bIdx];
bool previousResultPointWasCell = false;
if ( bIdx == 0 ) previousResultPointWasCell = true; // Wellhead
// Go downwards until we find a none-cell resultpoint just after a cell-resultpoint
// When we do, start propagating
for ( size_t rpIdx = 0; rpIdx < wellResultBranch.m_branchResultPoints.size(); ++rpIdx )
{
RigWellResultPoint resPoint = wellResultBranch.m_branchResultPoints[rpIdx];
if ( resPoint.isCell() )
{
previousResultPointWasCell = true;
}
else
{
if ( previousResultPointWasCell )
{
RigWellResultPoint prevResPoint;
if ( bIdx == 0 && rpIdx == 0 )
{
prevResPoint = wellResFrame.m_wellHead;
}
else
{
prevResPoint = wellResultBranch.m_branchResultPoints[rpIdx - 1];
}
cvf::Vec3d lastConnectionPos =
grids[prevResPoint.m_gridIndex]->cell( prevResPoint.m_gridCellIndex ).center();
SegmentPositionContribution posContrib( prevResPoint.m_ertSegmentId,
lastConnectionPos,
0.0,
false,
-1,
prevResPoint.m_ertSegmentId,
true );
int ertSegmentId = resPoint.m_ertSegmentId;
std::map<int, std::vector<SegmentPositionContribution>>::iterator posContribIt;
posContribIt = segmentIdToPositionContrib.find( ertSegmentId );
CVF_ASSERT( posContribIt != segmentIdToPositionContrib.end() );
std::vector<SegmentPositionContribution> posContributions = posContribIt->second;
for ( size_t i = 0; i < posContributions.size(); ++i )
{
posContributions[i].m_segmentIdAbove = prevResPoint.m_ertSegmentId;
}
posContributions.push_back( posContrib );
propagatePosContribDownwards( segmentIdToPositionContrib,
allErtSegments,
ertSegmentId,
posContributions );
}
previousResultPointWasCell = false;
}
}
}
// Calculate the bottom position of all the unpositioned segments
// Then do the calculation based on the refined contributions
std::map<int, std::vector<SegmentPositionContribution>>::iterator posContribIt =
segmentIdToPositionContrib.begin();
std::map<int, cvf::Vec3d> bottomPositions;
while ( posContribIt != segmentIdToPositionContrib.end() )
{
bottomPositions[posContribIt->first] = interpolate3DPosition( posContribIt->second );
++posContribIt;
}
// Distribute the positions to the resultpoints stored in the wellResultBranch.m_branchResultPoints
for ( size_t bIdx = 0; bIdx < wellResFrame.m_wellResultBranches.size(); ++bIdx )
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[bIdx];
for ( size_t rpIdx = 0; rpIdx < wellResultBranch.m_branchResultPoints.size(); ++rpIdx )
{
RigWellResultPoint& resPoint = wellResultBranch.m_branchResultPoints[rpIdx];
if ( !resPoint.isCell() )
{
resPoint.m_bottomPosition = bottomPositions[resPoint.m_ertSegmentId];
}
}
}
} // End of the MSW section
else
{
// Code handling None-MSW Wells ... Normal wells that is.
WellResultPointHasSubCellConnectionCalculator subCellConnCalc( m_eclipseCase->mainGrid(), ert_well_state );
int lastGridNr = static_cast<int>( grids.size() ) - 1;
for ( int gridNr = 0; gridNr <= lastGridNr; ++gridNr )
{
const well_conn_type* ert_wellhead =
well_state_iget_wellhead( ert_well_state, static_cast<int>( gridNr ) );
if ( ert_wellhead )
{
RigWellResultPoint wellHeadRp =
createWellResultPoint( grids[gridNr], ert_wellhead, -1, -1, wellName );
// HACK: Ert returns open as "this is equally wrong as closed for well heads".
// Well heads are not open jfr mail communication with HHGS and JH Statoil 07.01.2016
wellHeadRp.m_isOpen = false;
if ( !subCellConnCalc.hasSubCellConnection( wellHeadRp ) ) wellResFrame.m_wellHead = wellHeadRp;
}
const well_conn_collection_type* connections =
well_state_get_grid_connections( ert_well_state, this->ertGridName( gridNr ).data() );
// Import all well result cells for all connections
if ( connections )
{
int connectionCount = well_conn_collection_get_size( connections );
if ( connectionCount )
{
wellResFrame.m_wellResultBranches.push_back( RigWellResultBranch() );
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches.back();
wellResultBranch.m_ertBranchId = 0; // Normal wells have only one branch
size_t existingCellCount = wellResultBranch.m_branchResultPoints.size();
wellResultBranch.m_branchResultPoints.resize( existingCellCount + connectionCount );
for ( int connIdx = 0; connIdx < connectionCount; connIdx++ )
{
well_conn_type* ert_connection = well_conn_collection_iget( connections, connIdx );
RigWellResultPoint wellRp =
createWellResultPoint( grids[gridNr], ert_connection, -1, -1, wellName );
if ( !subCellConnCalc.hasSubCellConnection( wellRp ) )
{
wellResultBranch.m_branchResultPoints[existingCellCount + connIdx] = wellRp;
}
}
}
}
}
}
}
std::vector<QDateTime> filteredTimeSteps;
{
std::vector<RigEclipseTimeStepInfo> filteredTimeStepInfos = createFilteredTimeStepInfos();
for ( auto a : filteredTimeStepInfos )
{
filteredTimeSteps.push_back( a.m_date );
}
}
simWellData->computeMappingFromResultTimeIndicesToWellTimeIndices( filteredTimeSteps );
wells.push_back( simWellData.p() );
progress.incrementProgress();
}
well_info_free( ert_well_info );
m_eclipseCase->setSimWellData( wells );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RifReaderEclipseOutput::validKeywordsForPorosityModel( const QStringList& keywords,
const std::vector<size_t>& keywordDataItemCounts,
const RigActiveCellInfo* matrixActiveCellInfo,
const RigActiveCellInfo* fractureActiveCellInfo,
RiaDefines::PorosityModelType porosityModel,
size_t timeStepCount ) const
{
CVF_ASSERT( matrixActiveCellInfo );
if ( keywords.size() != static_cast<int>( keywordDataItemCounts.size() ) )
{
return QStringList();
}
if ( porosityModel == RiaDefines::PorosityModelType::FRACTURE_MODEL )
{
if ( fractureActiveCellInfo->reservoirActiveCellCount() == 0 )
{
return QStringList();
}
}
QStringList keywordsWithCorrectNumberOfDataItems;
for ( int i = 0; i < keywords.size(); i++ )
{
QString keyword = keywords[i];
size_t keywordDataItemCount = keywordDataItemCounts[i];
bool validKeyword = false;
size_t timeStepsAllCellsRest = keywordDataItemCount % matrixActiveCellInfo->reservoirCellCount();
if ( timeStepsAllCellsRest == 0 &&
keywordDataItemCount <= timeStepCount * matrixActiveCellInfo->reservoirCellCount() )
{
// Found result for all cells for N time steps, usually a static dataset for one time step
validKeyword = true;
}
else
{
size_t timeStepsMatrixRest = keywordDataItemCount % matrixActiveCellInfo->reservoirActiveCellCount();
size_t timeStepsFractureRest = 0;
if ( fractureActiveCellInfo->reservoirActiveCellCount() > 0 )
{
timeStepsFractureRest = keywordDataItemCount % fractureActiveCellInfo->reservoirActiveCellCount();
}
size_t sumFractureMatrixActiveCellCount = matrixActiveCellInfo->reservoirActiveCellCount() +
fractureActiveCellInfo->reservoirActiveCellCount();
size_t timeStepsMatrixAndFractureRest = keywordDataItemCount % sumFractureMatrixActiveCellCount;
if ( porosityModel == RiaDefines::PorosityModelType::MATRIX_MODEL && timeStepsMatrixRest == 0 )
{
if ( keywordDataItemCount <= timeStepCount * std::max( matrixActiveCellInfo->reservoirActiveCellCount(),
sumFractureMatrixActiveCellCount ) )
{
validKeyword = true;
}
}
else if ( porosityModel == RiaDefines::PorosityModelType::FRACTURE_MODEL &&
fractureActiveCellInfo->reservoirActiveCellCount() > 0 && timeStepsFractureRest == 0 )
{
if ( keywordDataItemCount <= timeStepCount * std::max( fractureActiveCellInfo->reservoirActiveCellCount(),
sumFractureMatrixActiveCellCount ) )
{
validKeyword = true;
}
}
else if ( timeStepsMatrixAndFractureRest == 0 )
{
if ( keywordDataItemCount <= timeStepCount * sumFractureMatrixActiveCellCount )
{
validKeyword = true;
}
}
}
// Check for INIT values that has only values for main grid active cells
if ( !validKeyword )
{
if ( timeStepCount == 1 )
{
size_t mainGridMatrixActiveCellCount;
matrixActiveCellInfo->gridActiveCellCounts( 0, mainGridMatrixActiveCellCount );
size_t mainGridFractureActiveCellCount;
fractureActiveCellInfo->gridActiveCellCounts( 0, mainGridFractureActiveCellCount );
if ( keywordDataItemCount == mainGridMatrixActiveCellCount ||
keywordDataItemCount == mainGridFractureActiveCellCount ||
keywordDataItemCount == mainGridMatrixActiveCellCount + mainGridFractureActiveCellCount )
{
validKeyword = true;
}
}
}
if ( validKeyword )
{
keywordsWithCorrectNumberOfDataItems.push_back( keyword );
}
}
return keywordsWithCorrectNumberOfDataItems;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigEclipseTimeStepInfo> RifReaderEclipseOutput::createFilteredTimeStepInfos()
{
std::vector<RigEclipseTimeStepInfo> timeStepInfos;
if ( m_dynamicResultsAccess.notNull() )
{
std::vector<QDateTime> timeStepsOnFile;
std::vector<double> daysSinceSimulationStartOnFile;
std::vector<int> reportNumbersOnFile;
m_dynamicResultsAccess->timeSteps( &timeStepsOnFile, &daysSinceSimulationStartOnFile );
reportNumbersOnFile = m_dynamicResultsAccess->reportNumbers();
if ( timeStepsOnFile.size() != daysSinceSimulationStartOnFile.size() ) return timeStepInfos;
if ( timeStepsOnFile.size() != reportNumbersOnFile.size() ) return timeStepInfos;
for ( size_t i = 0; i < timeStepsOnFile.size(); i++ )
{
if ( this->isTimeStepIncludedByFilter( i ) )
{
timeStepInfos.push_back( RigEclipseTimeStepInfo( timeStepsOnFile[i],
reportNumbersOnFile[i],
daysSinceSimulationStartOnFile[i] ) );
}
}
}
return timeStepInfos;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::isEclipseAndSoursimTimeStepsEqual( const QDateTime& eclipseDateTime,
const QDateTime& sourSimDateTime )
{
// Compare date down to and including seconds
// Compare of complete date time objects will often result in differences
const int secondsThreshold = 4;
const QString dateStr( "yyyy.MMM.dd hh:mm:ss:zzz" );
int secondsDiff = eclipseDateTime.secsTo( sourSimDateTime );
if ( secondsDiff > secondsThreshold )
{
RiaLogging::error( "HDF: Time steps does not match" );
RiaLogging::error( QString( " %1 - Eclipse" ).arg( eclipseDateTime.toString( dateStr ) ) );
RiaLogging::error( QString( " %1 - SourSim" ).arg( sourSimDateTime.toString( dateStr ) ) );
return false;
}
if ( eclipseDateTime.time().second() != sourSimDateTime.time().second() )
{
RiaLogging::warning( "HDF: Time steps differ, but within time step compare threshold" );
RiaLogging::warning( QString( " %1 - Eclipse" ).arg( eclipseDateTime.toString( dateStr ) ) );
RiaLogging::warning( QString( " %1 - SourSim" ).arg( sourSimDateTime.toString( dateStr ) ) );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
ecl_grid_type* RifReaderEclipseOutput::loadAllGrids() const
{
ecl_grid_type* mainEclGrid = ecl_grid_alloc( RiaStringEncodingTools::toNativeEncoded( m_fileName ).data() );
if ( m_ecl_init_file )
{
// TODO : ecl_grid_alloc() will automatically read ACTNUM from EGRID file, and reading of active cell
// information can be skipped if PORV is available
bool isDualPorosity = ecl_grid_dual_grid( mainEclGrid );
auto activeCells = RifActiveCellsReader::activeCellsFromPorvKeyword( m_ecl_init_file, isDualPorosity );
if ( !activeCells.empty() )
{
RifActiveCellsReader::applyActiveCellsToAllGrids( mainEclGrid, activeCells );
}
}
return mainEclGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::updateFromGridCount( size_t gridCount )
{
if ( m_dynamicResultsAccess.notNull() )
{
m_dynamicResultsAccess->updateFromGridCount( gridCount );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::extractResultValuesBasedOnPorosityModel( RiaDefines::PorosityModelType matrixOrFracture,
std::vector<double>* destinationResultValues,
const std::vector<double>& sourceResultValues )
{
if ( sourceResultValues.size() == 0 ) return;
RigActiveCellInfo* fracActCellInfo = m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::FRACTURE_MODEL );
if ( matrixOrFracture == RiaDefines::PorosityModelType::MATRIX_MODEL && fracActCellInfo->reservoirActiveCellCount() == 0 )
{
destinationResultValues->insert( destinationResultValues->end(),
sourceResultValues.begin(),
sourceResultValues.end() );
}
else
{
RigActiveCellInfo* actCellInfo = m_eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
size_t sourceStartPosition = 0;
for ( size_t i = 0; i < m_eclipseCase->mainGrid()->gridCount(); i++ )
{
if ( m_eclipseCase->mainGrid()->gridByIndex( i )->isTempGrid() ) continue;
size_t matrixActiveCellCount = 0;
size_t fractureActiveCellCount = 0;
actCellInfo->gridActiveCellCounts( i, matrixActiveCellCount );
fracActCellInfo->gridActiveCellCounts( i, fractureActiveCellCount );
if ( matrixOrFracture == RiaDefines::PorosityModelType::MATRIX_MODEL )
{
destinationResultValues->insert( destinationResultValues->end(),
sourceResultValues.begin() + sourceStartPosition,
sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount );
}
else
{
if ( ( matrixActiveCellCount + fractureActiveCellCount ) > sourceResultValues.size() )
{
// Special handling of the situation where we only have data for one fracture mode
matrixActiveCellCount = 0;
}
destinationResultValues->insert( destinationResultValues->end(),
sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount,
sourceResultValues.begin() + sourceStartPosition +
matrixActiveCellCount + fractureActiveCellCount );
}
sourceStartPosition += ( matrixActiveCellCount + fractureActiveCellCount );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::openInitFile()
{
if ( m_ecl_init_file )
{
return;
}
QString initFileName = RifEclipseOutputFileTools::firstFileNameOfType( m_filesWithSameBaseName, ECL_INIT_FILE );
if ( initFileName.size() > 0 )
{
m_ecl_init_file =
ecl_file_open( RiaStringEncodingTools::toNativeEncoded( initFileName ).data(), ECL_FILE_CLOSE_STREAM );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferCoarseningInfo( const ecl_grid_type* eclGrid, RigGridBase* grid )
{
int coarseGroupCount = ecl_grid_get_num_coarse_groups( eclGrid );
for ( int i = 0; i < coarseGroupCount; i++ )
{
ecl_coarse_cell_type* coarse_cell = ecl_grid_iget_coarse_group( eclGrid, i );
if ( coarse_cell )
{
size_t i1 = static_cast<size_t>( ecl_coarse_cell_get_i1( coarse_cell ) );
size_t i2 = static_cast<size_t>( ecl_coarse_cell_get_i2( coarse_cell ) );
size_t j1 = static_cast<size_t>( ecl_coarse_cell_get_j1( coarse_cell ) );
size_t j2 = static_cast<size_t>( ecl_coarse_cell_get_j2( coarse_cell ) );
size_t k1 = static_cast<size_t>( ecl_coarse_cell_get_k1( coarse_cell ) );
size_t k2 = static_cast<size_t>( ecl_coarse_cell_get_k2( coarse_cell ) );
grid->addCoarseningBox( i1, i2, j1, j2, k1, k2 );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RiaDefines::PhaseType> RifReaderEclipseOutput::availablePhases() const
{
if ( m_dynamicResultsAccess.notNull() )
{
return m_dynamicResultsAccess->availablePhases();
}
return std::set<RiaDefines::PhaseType>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::string RifReaderEclipseOutput::ertGridName( size_t gridNr )
{
std::string gridName;
if ( gridNr == 0 )
{
gridName = ECL_GRID_GLOBAL_GRID;
}
else
{
CVF_ASSERT( m_eclipseCase );
CVF_ASSERT( m_eclipseCase->gridCount() > gridNr );
gridName = m_eclipseCase->grid( gridNr )->gridName();
}
return gridName;
}