mirror of
				https://github.com/OPM/ResInsight.git
				synced 2025-02-25 18:55:39 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			856 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			856 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  Copyright (C) Statoil ASA
 | 
						|
//  Copyright (C) Ceetron Solutions AS
 | 
						|
// 
 | 
						|
//  ResInsight is free software: you can redistribute it and/or modify
 | 
						|
//  it under the terms of the GNU General Public License as published by
 | 
						|
//  the Free Software Foundation, either version 3 of the License, or
 | 
						|
//  (at your option) any later version.
 | 
						|
// 
 | 
						|
//  ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
						|
//  WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
//  FITNESS FOR A PARTICULAR PURPOSE.
 | 
						|
// 
 | 
						|
//  See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html> 
 | 
						|
//  for more details.
 | 
						|
//
 | 
						|
/////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
//==================================================================================================
 | 
						|
/// 
 | 
						|
//==================================================================================================
 | 
						|
#include "RigGeoMechWellLogExtractor.h"
 | 
						|
 | 
						|
#include "RiaDefines.h"
 | 
						|
#include "RiaWeightedMeanCalculator.h"
 | 
						|
#include "RigFemTypes.h"
 | 
						|
#include "RigGeoMechBoreHoleStressCalculator.h"
 | 
						|
#include "RigFemPart.h"
 | 
						|
#include "RigFemPartCollection.h"
 | 
						|
#include "RigGeoMechCaseData.h"
 | 
						|
#include "RigFemPartResultsCollection.h"
 | 
						|
 | 
						|
#include "RigWellLogExtractionTools.h"
 | 
						|
#include "RigWellPath.h"
 | 
						|
#include "RigWellPathIntersectionTools.h"
 | 
						|
 | 
						|
#include "cafTensor3.h"
 | 
						|
#include "cvfGeometryTools.h"
 | 
						|
#include "cvfMath.h"
 | 
						|
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
const double RigGeoMechWellLogExtractor::UNIT_WEIGHT_OF_WATER = 9.81 * 1000.0; // N / m^3
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor(RigGeoMechCaseData* aCase,
 | 
						|
                                                       const RigWellPath*  wellpath,
 | 
						|
                                                       const std::string&  wellCaseErrorMsgName)
 | 
						|
    : RigWellLogExtractor(wellpath, wellCaseErrorMsgName)
 | 
						|
    , m_caseData(aCase)
 | 
						|
{
 | 
						|
    calculateIntersection();
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
/// 
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::curveData(const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values)
 | 
						|
{   
 | 
						|
    CVF_TIGHT_ASSERT(values);
 | 
						|
    
 | 
						|
    if (resAddr.resultPosType == RIG_WELLPATH_DERIVED)
 | 
						|
    {
 | 
						|
        if (resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString() || resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString())
 | 
						|
        {
 | 
						|
            wellBoreWallCurveData(resAddr, frameIndex, values);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        else if (resAddr.fieldName == "PP" || resAddr.fieldName == "OBG" || resAddr.fieldName == "SH")
 | 
						|
        {
 | 
						|
            wellPathScaledCurveData(resAddr, frameIndex, values);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        else if (resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination")
 | 
						|
        {
 | 
						|
            wellPathAngles(resAddr, values);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    if (!resAddr.isValid()) return;
 | 
						|
 | 
						|
    RigFemResultAddress convResAddr = resAddr;
 | 
						|
 | 
						|
    // When showing POR results, always use the element nodal result, 
 | 
						|
    // to get correct handling of elements without POR results
 | 
						|
     
 | 
						|
    if (convResAddr.fieldName == "POR-Bar") convResAddr.resultPosType = RIG_ELEMENT_NODAL;
 | 
						|
 | 
						|
    CVF_ASSERT(resAddr.resultPosType != RIG_WELLPATH_DERIVED);
 | 
						|
 | 
						|
    const std::vector<float>& resultValues    = m_caseData->femPartResults()->resultValues(convResAddr, 0, frameIndex);
 | 
						|
 | 
						|
    if (!resultValues.size()) return;
 | 
						|
 | 
						|
    values->resize(m_intersections.size());
 | 
						|
 | 
						|
    for (size_t intersectionIdx = 0; intersectionIdx < m_intersections.size(); ++intersectionIdx)
 | 
						|
    {
 | 
						|
        (*values)[intersectionIdx] = static_cast<double>(interpolateGridResultValue<float>(convResAddr.resultPosType, resultValues, intersectionIdx, false));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
float RigGeoMechWellLogExtractor::calculatePorePressureInSegment(int64_t intersectionIdx, float averageSegmentPorePressureBar, double hydroStaticPorePressureBar, double effectiveDepthMeters, const std::vector<float>& poreElementPressuresPascal) const
 | 
						|
{
 | 
						|
    double porePressure = hydroStaticPorePressureBar;
 | 
						|
 | 
						|
    // 1: Try pore pressure from the grid
 | 
						|
    if (porePressure == hydroStaticPorePressureBar && averageSegmentPorePressureBar != std::numeric_limits<double>::infinity() && averageSegmentPorePressureBar > 0.0)
 | 
						|
    {
 | 
						|
        porePressure = averageSegmentPorePressureBar;
 | 
						|
    }
 | 
						|
 | 
						|
    // 2: Try mud weight from LAS-file to generate pore pressure
 | 
						|
    if (porePressure == hydroStaticPorePressureBar && !m_wellLogMdAndMudWeightKgPerM3.empty())
 | 
						|
    {
 | 
						|
        double lasMudWeightKgPerM3 = getWellLogSegmentValue(intersectionIdx, m_wellLogMdAndMudWeightKgPerM3);
 | 
						|
        if (lasMudWeightKgPerM3 != std::numeric_limits<double>::infinity())
 | 
						|
        {
 | 
						|
            double specificMudWeightNPerM3 = lasMudWeightKgPerM3 * 9.81;
 | 
						|
            double porePressurePascal = specificMudWeightNPerM3 * effectiveDepthMeters;
 | 
						|
            porePressure = pascalToBar(porePressurePascal);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
    // 3: Try pore pressure from element property tables
 | 
						|
    if (porePressure == hydroStaticPorePressureBar && elmIdx < poreElementPressuresPascal.size())
 | 
						|
    {
 | 
						|
        // Pore pressure from element property tables are in pascal.
 | 
						|
        porePressure = pascalToBar(poreElementPressuresPascal[elmIdx]);
 | 
						|
    }
 | 
						|
    // 4: If no pore-pressure was found, the default value of hydrostatic pore pressure is used.
 | 
						|
 | 
						|
    CVF_ASSERT(porePressure >= 0.0);
 | 
						|
    return porePressure;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
float RigGeoMechWellLogExtractor::calculatePoissonRatio(int64_t intersectionIdx, const std::vector<float>& poissonRatios) const
 | 
						|
{
 | 
						|
    const double defaultPoissonRatio = 0.25;
 | 
						|
 | 
						|
    double poissonRatio = defaultPoissonRatio;
 | 
						|
 | 
						|
    if (!m_wellLogMdAndPoissonRatios.empty())
 | 
						|
    {
 | 
						|
        double lasPoissionRatio = getWellLogSegmentValue(intersectionIdx, m_wellLogMdAndPoissonRatios);
 | 
						|
        if (lasPoissionRatio != std::numeric_limits<double>::infinity())
 | 
						|
        {
 | 
						|
            poissonRatio = lasPoissionRatio;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
    if (poissonRatio == defaultPoissonRatio && elmIdx < poissonRatios.size())
 | 
						|
    {
 | 
						|
        poissonRatio = poissonRatios[elmIdx];
 | 
						|
    }
 | 
						|
    return poissonRatio;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
float RigGeoMechWellLogExtractor::calculateUcs(int64_t intersectionIdx, const std::vector<float>& ucsValuesPascal) const
 | 
						|
{
 | 
						|
    // Typical UCS: http://ceae.colorado.edu/~amadei/CVEN5768/PDF/NOTES8.pdf
 | 
						|
    // Typical UCS for Shale is 5 - 100 MPa -> 50 - 1000 bar.
 | 
						|
    const double defaultUniaxialStrengthInBar = 100.0;
 | 
						|
 | 
						|
    double uniaxialStrengthInBar = defaultUniaxialStrengthInBar;
 | 
						|
    if (!m_wellLogMdAndUcsBar.empty())
 | 
						|
    {
 | 
						|
        double lasUniaxialStrengthInBar = getWellLogSegmentValue(intersectionIdx, m_wellLogMdAndUcsBar);
 | 
						|
        if (lasUniaxialStrengthInBar != std::numeric_limits<double>::infinity())
 | 
						|
        {
 | 
						|
            uniaxialStrengthInBar = lasUniaxialStrengthInBar;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
    if (uniaxialStrengthInBar == defaultUniaxialStrengthInBar && elmIdx < ucsValuesPascal.size())
 | 
						|
    {
 | 
						|
        // Read UCS from element table in Pascal
 | 
						|
        uniaxialStrengthInBar = pascalToBar(ucsValuesPascal[elmIdx]);
 | 
						|
    }
 | 
						|
    return uniaxialStrengthInBar;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::wellPathAngles(const RigFemResultAddress& resAddr, std::vector<double>* values)
 | 
						|
{
 | 
						|
    CVF_ASSERT(values);
 | 
						|
    CVF_ASSERT(resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination");
 | 
						|
    values->resize(m_intersections.size(), 0.0f);
 | 
						|
    const double epsilon = 1.0e-6 * 360;
 | 
						|
    const cvf::Vec3d trueNorth(0.0, 1.0, 0.0);
 | 
						|
    const cvf::Vec3d up(0.0, 0.0, 1.0);
 | 
						|
    for (int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx)
 | 
						|
    {
 | 
						|
        cvf::Vec3d wellPathTangent = calculateWellPathTangent(intersectionIdx, TangentFollowWellPathSegments);
 | 
						|
   
 | 
						|
        // Deviation from vertical. Since well path is tending downwards we compare with negative z.
 | 
						|
        double inclination = cvf::Math::toDegrees(std::acos(cvf::Vec3d(0.0, 0.0, -1.0) * wellPathTangent.getNormalized()));       
 | 
						|
 | 
						|
        if (resAddr.fieldName == "Azimuth")
 | 
						|
        {
 | 
						|
            double azimuth = HUGE_VAL;
 | 
						|
            
 | 
						|
            // Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the plot.
 | 
						|
            if (cvf::Math::valueInRange(inclination, epsilon, 180.0 - epsilon))
 | 
						|
            {
 | 
						|
                cvf::Vec3d projectedTangentXY = wellPathTangent;
 | 
						|
                projectedTangentXY.z() = 0.0;
 | 
						|
 | 
						|
                // Do tangentXY to true north for clockwise angles.
 | 
						|
                double dotProduct = projectedTangentXY * trueNorth;
 | 
						|
                double crossProduct = (projectedTangentXY ^ trueNorth) * up;
 | 
						|
                // http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx
 | 
						|
                azimuth = cvf::Math::toDegrees(std::atan2(crossProduct, dotProduct));
 | 
						|
                if (azimuth < 0.0)
 | 
						|
                {
 | 
						|
                    // Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180
 | 
						|
                    // where the negative angles are counter clockwise.
 | 
						|
                    // To get all positive clockwise angles, we add 360 degrees to negative angles.
 | 
						|
                    azimuth = azimuth + 360.0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            (*values)[intersectionIdx] = azimuth;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            (*values)[intersectionIdx] = inclination;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::wellPathScaledCurveData(const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values)
 | 
						|
{
 | 
						|
    CVF_ASSERT(values);
 | 
						|
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
 | 
						|
 | 
						|
    std::string nativeFieldName;
 | 
						|
    std::string nativeCompName;
 | 
						|
    if (resAddr.fieldName == "PP")
 | 
						|
    {
 | 
						|
        nativeFieldName = "POR-Bar"; // More likely to be in memory than POR
 | 
						|
    }
 | 
						|
    else if (resAddr.fieldName == "OBG")
 | 
						|
    {
 | 
						|
        nativeFieldName = "ST";
 | 
						|
        nativeCompName = "S33";
 | 
						|
    }
 | 
						|
    else if (resAddr.fieldName == "SH")
 | 
						|
    {
 | 
						|
        nativeFieldName = "ST";
 | 
						|
        nativeCompName = "S3";
 | 
						|
    }
 | 
						|
 | 
						|
    RigFemResultAddress nativeAddr(RIG_ELEMENT_NODAL, nativeFieldName, nativeCompName);
 | 
						|
    RigFemResultAddress porElementResAddr(RIG_ELEMENT, "POR", "");
 | 
						|
 | 
						|
    std::vector<float> unscaledResultValues = resultCollection->resultValues(nativeAddr, 0, frameIndex);
 | 
						|
    std::vector<float> poreElementPressuresPascal = resultCollection->resultValues(porElementResAddr, 0, frameIndex);
 | 
						|
 | 
						|
    std::vector<float> interpolatedInterfaceValues;
 | 
						|
    interpolatedInterfaceValues.resize(m_intersections.size(), std::numeric_limits<double>::infinity());
 | 
						|
 | 
						|
#pragma omp parallel for
 | 
						|
    for (int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx)
 | 
						|
    {
 | 
						|
        size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
        RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
        if (!(elmType == HEX8 || elmType == HEX8P)) continue;
 | 
						|
 | 
						|
        interpolatedInterfaceValues[intersectionIdx] = interpolateGridResultValue<float>(nativeAddr.resultPosType, unscaledResultValues, intersectionIdx, false);
 | 
						|
    }
 | 
						|
 | 
						|
    values->resize(m_intersections.size(), 0.0f);
 | 
						|
 | 
						|
#pragma omp parallel for
 | 
						|
    for (int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx)
 | 
						|
    {
 | 
						|
        // Set the value to invalid by default
 | 
						|
        (*values)[intersectionIdx] = std::numeric_limits<double>::infinity();
 | 
						|
 | 
						|
        size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
        RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
 | 
						|
        if (!(elmType == HEX8 || elmType == HEX8P)) continue;
 | 
						|
 | 
						|
        cvf::Vec3f centroid = cellCentroid(intersectionIdx);
 | 
						|
 | 
						|
        double trueVerticalDepth = -centroid.z();
 | 
						|
        
 | 
						|
        double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
 | 
						|
        double hydroStaticPorePressureBar = pascalToBar(effectiveDepthMeters * UNIT_WEIGHT_OF_WATER);
 | 
						|
 | 
						|
        float averageUnscaledValue = std::numeric_limits<float>::infinity();
 | 
						|
        bool validAverage = averageIntersectionValuesToSegmentValue(intersectionIdx, interpolatedInterfaceValues, std::numeric_limits<float>::infinity(), &averageUnscaledValue);
 | 
						|
 | 
						|
        if (resAddr.fieldName == "PP" && validAverage)
 | 
						|
        {
 | 
						|
            double segmentPorePressureFromGrid = averageUnscaledValue;
 | 
						|
            averageUnscaledValue = calculatePorePressureInSegment(intersectionIdx, segmentPorePressureFromGrid, hydroStaticPorePressureBar, effectiveDepthMeters, poreElementPressuresPascal);
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        (*values)[intersectionIdx] = static_cast<double>(averageUnscaledValue) / hydroStaticPorePressureBar;            
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::wellBoreWallCurveData(const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values)
 | 
						|
{
 | 
						|
    CVF_ASSERT(values);
 | 
						|
    CVF_ASSERT(resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString() || resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString());
 | 
						|
 | 
						|
    // The result addresses needed
 | 
						|
    RigFemResultAddress stressResAddr(RIG_ELEMENT_NODAL, "ST", "");
 | 
						|
    RigFemResultAddress porBarResAddr(RIG_ELEMENT_NODAL, "POR-Bar", "");
 | 
						|
    // Allow POR as an element property value
 | 
						|
    RigFemResultAddress porElementResAddr(RIG_ELEMENT, "POR", "");
 | 
						|
    RigFemResultAddress poissonResAddr(RIG_ELEMENT, "RATIO", "");
 | 
						|
    RigFemResultAddress ucsResAddr(RIG_ELEMENT, "UCS", "");
 | 
						|
    
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
 | 
						|
 | 
						|
    // Load results
 | 
						|
    std::vector<caf::Ten3f> vertexStressesFloat = resultCollection->tensors(stressResAddr, 0, frameIndex);   
 | 
						|
    if (!vertexStressesFloat.size()) return;
 | 
						|
 | 
						|
    std::vector<caf::Ten3d> vertexStresses; vertexStresses.reserve(vertexStressesFloat.size());
 | 
						|
    for (const caf::Ten3f& floatTensor : vertexStressesFloat)
 | 
						|
    {
 | 
						|
        vertexStresses.push_back(caf::Ten3d(floatTensor));
 | 
						|
    }
 | 
						|
    std::vector<float> porePressures              = resultCollection->resultValues(porBarResAddr, 0, frameIndex);
 | 
						|
    std::vector<float> poreElementPressuresPascal = resultCollection->resultValues(porElementResAddr, 0, frameIndex);
 | 
						|
    std::vector<float> poissonRatios              = resultCollection->resultValues(poissonResAddr, 0, frameIndex);
 | 
						|
    std::vector<float> ucsValuesPascal            = resultCollection->resultValues(ucsResAddr, 0, frameIndex);
 | 
						|
 | 
						|
    std::vector<float> interpolatedInterfacePorePressureBar;
 | 
						|
    interpolatedInterfacePorePressureBar.resize(m_intersections.size(), std::numeric_limits<double>::infinity());
 | 
						|
 | 
						|
    std::vector<caf::Ten3d> interpolatedInterfaceStressBar;
 | 
						|
    interpolatedInterfaceStressBar.resize(m_intersections.size());
 | 
						|
#pragma omp parallel for
 | 
						|
    for (int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx)
 | 
						|
    {
 | 
						|
        size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
        RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
        if (!(elmType == HEX8 || elmType == HEX8P)) continue;
 | 
						|
 | 
						|
        interpolatedInterfacePorePressureBar[intersectionIdx]     = interpolateGridResultValue(porBarResAddr.resultPosType, porePressures, intersectionIdx, false);
 | 
						|
        interpolatedInterfaceStressBar[intersectionIdx] = interpolateGridResultValue(stressResAddr.resultPosType, vertexStresses, intersectionIdx, false);
 | 
						|
    }
 | 
						|
 | 
						|
    values->resize(m_intersections.size(), 0.0f);
 | 
						|
    
 | 
						|
#pragma omp parallel for
 | 
						|
    for (int64_t intersectionIdx = 0; intersectionIdx < (int64_t) m_intersections.size(); ++intersectionIdx)
 | 
						|
    {        
 | 
						|
        size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
        RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
 | 
						|
        if (!(elmType == HEX8 || elmType == HEX8P)) continue;
 | 
						|
 | 
						|
        cvf::Vec3f centroid = cellCentroid(intersectionIdx);
 | 
						|
 | 
						|
        double trueVerticalDepth = -centroid.z();
 | 
						|
        double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
 | 
						|
        double hydroStaticPorePressureBar = pascalToBar(effectiveDepthMeters * UNIT_WEIGHT_OF_WATER);
 | 
						|
 | 
						|
        float averagePorePressureBar = std::numeric_limits<float>::infinity();
 | 
						|
        bool validGridPorePressure = averageIntersectionValuesToSegmentValue(intersectionIdx, interpolatedInterfacePorePressureBar, std::numeric_limits<float>::infinity(), &averagePorePressureBar);
 | 
						|
        bool isFGregion = validGridPorePressure; // FG is for sands, SFG for shale. Sands has PP, shale does not.
 | 
						|
 | 
						|
        double porePressureBar = calculatePorePressureInSegment(intersectionIdx, averagePorePressureBar, hydroStaticPorePressureBar, effectiveDepthMeters, poreElementPressuresPascal);
 | 
						|
        double poissonRatio    = calculatePoissonRatio(intersectionIdx, poissonRatios);
 | 
						|
        double ucsBar          = calculateUcs(intersectionIdx, ucsValuesPascal);
 | 
						|
 | 
						|
        caf::Ten3d segmentStress;
 | 
						|
        bool validSegmentStress = averageIntersectionValuesToSegmentValue(intersectionIdx, interpolatedInterfaceStressBar, caf::Ten3d::invalid(), &segmentStress);
 | 
						|
 | 
						|
        cvf::Vec3d wellPathTangent = calculateWellPathTangent(intersectionIdx, TangentConstantWithinCell);
 | 
						|
        caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation(wellPathTangent, segmentStress);
 | 
						|
        caf::Ten3d wellPathStressDouble(wellPathStressFloat);
 | 
						|
 | 
						|
        RigGeoMechBoreHoleStressCalculator sigmaCalculator(wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32);
 | 
						|
        double resultValue = std::numeric_limits<double>::infinity();
 | 
						|
        if (resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString())
 | 
						|
        {
 | 
						|
            if (isFGregion && validSegmentStress)
 | 
						|
            {
 | 
						|
                resultValue = sigmaCalculator.solveFractureGradient();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            CVF_ASSERT(resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString());
 | 
						|
            if (!isFGregion && validSegmentStress)
 | 
						|
            {
 | 
						|
                resultValue = sigmaCalculator.solveStassiDalia();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (resultValue != std::numeric_limits<double>::infinity())
 | 
						|
        {
 | 
						|
            if (hydroStaticPorePressureBar > 1.0e-8)
 | 
						|
            {
 | 
						|
                resultValue /= hydroStaticPorePressureBar;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        (*values)[intersectionIdx] = resultValue;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData()
 | 
						|
{
 | 
						|
    return m_caseData.p();
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::setRkbDiff(double rkbDiff)
 | 
						|
{
 | 
						|
    m_rkbDiff = rkbDiff;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::setWellLogMdAndMudWeightKgPerM3(const std::vector<std::pair<double, double>>& porePressures)
 | 
						|
{
 | 
						|
    m_wellLogMdAndMudWeightKgPerM3 = porePressures;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::setWellLogMdAndUcsBar(const std::vector<std::pair<double, double>>& ucsValues)
 | 
						|
{
 | 
						|
    m_wellLogMdAndUcsBar = ucsValues;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::setWellLogMdAndPoissonRatio(const std::vector<std::pair<double, double>>& poissonRatios)
 | 
						|
{
 | 
						|
    m_wellLogMdAndPoissonRatios = poissonRatios;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
template<typename T>
 | 
						|
T RigGeoMechWellLogExtractor::interpolateGridResultValue(RigFemResultPosEnum   resultPosType,
 | 
						|
                                                         const std::vector<T>& gridResultValues,
 | 
						|
                                                         int64_t               intersectionIdx,
 | 
						|
                                                         bool                  averageNodeElementResults) const
 | 
						|
{
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
 | 
						|
 | 
						|
    size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
    RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
 | 
						|
    if (!(elmType == HEX8 || elmType == HEX8P)) return T();
 | 
						|
 | 
						|
    if (resultPosType == RIG_FORMATION_NAMES)
 | 
						|
    {
 | 
						|
        resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
 | 
						|
    }
 | 
						|
 | 
						|
    if (resultPosType == RIG_ELEMENT)
 | 
						|
    {
 | 
						|
        return gridResultValues[elmIdx];        
 | 
						|
    }
 | 
						|
 | 
						|
    cvf::StructGridInterface::FaceType cellFace = m_intersectedCellFaces[intersectionIdx];
 | 
						|
 | 
						|
    if (cellFace == cvf::StructGridInterface::NO_FACE)
 | 
						|
    {
 | 
						|
        if (resultPosType == RIG_ELEMENT_NODAL_FACE)
 | 
						|
        {
 | 
						|
            return std::numeric_limits<T>::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on a face.
 | 
						|
        }
 | 
						|
        // TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates.
 | 
						|
        // For now just pick the average value for the cell.
 | 
						|
        size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType(resultPosType, static_cast<int>(elmIdx), 0);
 | 
						|
        T sumOfVertexValues = gridResultValues[gridResultValueIdx];
 | 
						|
        for (int i = 1; i < 8; ++i)
 | 
						|
        {
 | 
						|
            gridResultValueIdx = femPart->resultValueIdxFromResultPosType(resultPosType, static_cast<int>(elmIdx), i);
 | 
						|
            sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx];
 | 
						|
        }
 | 
						|
        return sumOfVertexValues * (1.0 / 8.0);
 | 
						|
    }
 | 
						|
 | 
						|
    int faceNodeCount = 0;
 | 
						|
    const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace(elmType, cellFace, &faceNodeCount);
 | 
						|
    const int* elmNodeIndices = femPart->connectivities(elmIdx);
 | 
						|
 | 
						|
    cvf::Vec3d v0(nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]]);
 | 
						|
    cvf::Vec3d v1(nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]]);
 | 
						|
    cvf::Vec3d v2(nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]]);
 | 
						|
    cvf::Vec3d v3(nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]]);
 | 
						|
 | 
						|
    std::vector<size_t> nodeResIdx(4, cvf::UNDEFINED_SIZE_T);
 | 
						|
 | 
						|
    for (size_t i = 0; i < nodeResIdx.size(); ++i)
 | 
						|
    {
 | 
						|
        if (resultPosType == RIG_ELEMENT_NODAL_FACE)
 | 
						|
        {
 | 
						|
            nodeResIdx[i] = gridResultIndexFace(elmIdx, cellFace, static_cast<int>(i));
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            nodeResIdx[i] = femPart->resultValueIdxFromResultPosType(resultPosType, static_cast<int>(elmIdx), elementLocalIndicesForFace[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<T> nodeResultValues;
 | 
						|
    nodeResultValues.reserve(4);
 | 
						|
    if (resultPosType == RIG_ELEMENT_NODAL && averageNodeElementResults)
 | 
						|
    {
 | 
						|
        // Estimate nodal values as the average of the node values from each connected element.
 | 
						|
        for (size_t i = 0; i < nodeResIdx.size(); ++i)
 | 
						|
        {
 | 
						|
            int nodeIndex = femPart->nodeIdxFromElementNodeResultIdx(nodeResIdx[i]);
 | 
						|
            const std::vector<int>& elements = femPart->elementsUsingNode(nodeIndex);
 | 
						|
            const std::vector<unsigned char>& localIndices = femPart->elementLocalIndicesForNode(nodeIndex);
 | 
						|
            size_t otherGridResultValueIdx = femPart->resultValueIdxFromResultPosType(resultPosType, elements[0], static_cast<int>(localIndices[0]));
 | 
						|
            T nodeResultValue = gridResultValues[otherGridResultValueIdx];
 | 
						|
            for (size_t j = 1; j < elements.size(); ++j)
 | 
						|
            {
 | 
						|
                otherGridResultValueIdx = femPart->resultValueIdxFromResultPosType(resultPosType, elements[j], static_cast<int>(localIndices[j]));
 | 
						|
                nodeResultValue = nodeResultValue + gridResultValues[otherGridResultValueIdx];
 | 
						|
            }
 | 
						|
            nodeResultValue = nodeResultValue * (1.0 / elements.size());
 | 
						|
            nodeResultValues.push_back(nodeResultValue);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        for (size_t i = 0; i < nodeResIdx.size(); ++i)
 | 
						|
        {
 | 
						|
            nodeResultValues.push_back(gridResultValues[nodeResIdx[i]]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    T interpolatedValue = cvf::GeometryTools::interpolateQuad<T>(
 | 
						|
        v0, nodeResultValues[0],
 | 
						|
        v1, nodeResultValues[1],
 | 
						|
        v2, nodeResultValues[2],
 | 
						|
        v3, nodeResultValues[3],
 | 
						|
        m_intersections[intersectionIdx]
 | 
						|
    );
 | 
						|
 | 
						|
    return interpolatedValue;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
size_t RigGeoMechWellLogExtractor::gridResultIndexFace(size_t elementIdx, cvf::StructGridInterface::FaceType cellFace, int faceLocalNodeIdx) const
 | 
						|
{
 | 
						|
    CVF_ASSERT(cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4);
 | 
						|
    return elementIdx * 24 + static_cast<int>(cellFace) * 4 + faceLocalNodeIdx;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
/// 
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
void RigGeoMechWellLogExtractor::calculateIntersection()
 | 
						|
{
 | 
						|
    CVF_ASSERT(m_caseData->femParts()->partCount() == 1);
 | 
						|
 | 
						|
    std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo > uniqueIntersections;
 | 
						|
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    const std::vector<cvf::Vec3f>& nodeCoords =  femPart->nodes().coordinates;
 | 
						|
 | 
						|
    for (size_t wpp = 0; wpp < m_wellPath->m_wellPathPoints.size() - 1; ++wpp)
 | 
						|
    {
 | 
						|
        std::vector<HexIntersectionInfo> intersections;
 | 
						|
        cvf::Vec3d p1 = m_wellPath->m_wellPathPoints[wpp];
 | 
						|
        cvf::Vec3d p2 = m_wellPath->m_wellPathPoints[wpp+1];
 | 
						|
 | 
						|
        cvf::BoundingBox bb;
 | 
						|
 | 
						|
        bb.add(p1);
 | 
						|
        bb.add(p2);
 | 
						|
 | 
						|
        std::vector<size_t> closeCells = findCloseCells(bb);
 | 
						|
 | 
						|
        cvf::Vec3d hexCorners[8];
 | 
						|
        for (size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx)
 | 
						|
        {
 | 
						|
            RigElementType elmType = femPart->elementType(closeCells[ccIdx]);
 | 
						|
            if (!(elmType == HEX8 || elmType == HEX8P)) continue;
 | 
						|
 | 
						|
            const int* cornerIndices = femPart->connectivities(closeCells[ccIdx]);
 | 
						|
 | 
						|
            hexCorners[0] = cvf::Vec3d(nodeCoords[cornerIndices[0]]);
 | 
						|
            hexCorners[1] = cvf::Vec3d(nodeCoords[cornerIndices[1]]);
 | 
						|
            hexCorners[2] = cvf::Vec3d(nodeCoords[cornerIndices[2]]);
 | 
						|
            hexCorners[3] = cvf::Vec3d(nodeCoords[cornerIndices[3]]);
 | 
						|
            hexCorners[4] = cvf::Vec3d(nodeCoords[cornerIndices[4]]);
 | 
						|
            hexCorners[5] = cvf::Vec3d(nodeCoords[cornerIndices[5]]);
 | 
						|
            hexCorners[6] = cvf::Vec3d(nodeCoords[cornerIndices[6]]);
 | 
						|
            hexCorners[7] = cvf::Vec3d(nodeCoords[cornerIndices[7]]);
 | 
						|
 | 
						|
            //int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners, closeCells[ccIdx], &intersections);
 | 
						|
            RigHexIntersectionTools::lineHexCellIntersection(p1, p2, hexCorners, closeCells[ccIdx], &intersections);
 | 
						|
        }
 | 
						|
 | 
						|
        // Now, with all the intersections of this piece of line, we need to 
 | 
						|
        // sort them in order, and set the measured depth and corresponding cell index
 | 
						|
 | 
						|
        // Inserting the intersections in this map will remove identical intersections
 | 
						|
        // and sort them according to MD, CellIdx, Leave/enter
 | 
						|
 | 
						|
        double md1 = m_wellPath->m_measuredDepths[wpp];
 | 
						|
        double md2 = m_wellPath->m_measuredDepths[wpp+1];
 | 
						|
 | 
						|
        insertIntersectionsInMap(intersections,
 | 
						|
                                 p1, md1, p2, md2,
 | 
						|
                                 &uniqueIntersections);
 | 
						|
    }
 | 
						|
 | 
						|
    this->populateReturnArrays(uniqueIntersections);
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
/// 
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells(const cvf::BoundingBox& bb)
 | 
						|
{
 | 
						|
    std::vector<size_t> closeCells;
 | 
						|
 | 
						|
    if (m_caseData->femParts()->partCount())
 | 
						|
    {
 | 
						|
        m_caseData->femParts()->part(0)->findIntersectingCells(bb, &closeCells);
 | 
						|
    }
 | 
						|
    return closeCells;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
/// 
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell(size_t cellIndex, const cvf::Vec3d& startPoint, const cvf::Vec3d& endPoint) const
 | 
						|
{
 | 
						|
    std::array<cvf::Vec3d, 8> hexCorners;
 | 
						|
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    const std::vector<cvf::Vec3f>& nodeCoords =  femPart->nodes().coordinates;
 | 
						|
    const int* cornerIndices = femPart->connectivities(cellIndex);
 | 
						|
 | 
						|
    hexCorners[0] = cvf::Vec3d(nodeCoords[cornerIndices[0]]);
 | 
						|
    hexCorners[1] = cvf::Vec3d(nodeCoords[cornerIndices[1]]);
 | 
						|
    hexCorners[2] = cvf::Vec3d(nodeCoords[cornerIndices[2]]);
 | 
						|
    hexCorners[3] = cvf::Vec3d(nodeCoords[cornerIndices[3]]);
 | 
						|
    hexCorners[4] = cvf::Vec3d(nodeCoords[cornerIndices[4]]);
 | 
						|
    hexCorners[5] = cvf::Vec3d(nodeCoords[cornerIndices[5]]);
 | 
						|
    hexCorners[6] = cvf::Vec3d(nodeCoords[cornerIndices[6]]);
 | 
						|
    hexCorners[7] = cvf::Vec3d(nodeCoords[cornerIndices[7]]);
 | 
						|
 | 
						|
    return RigWellPathIntersectionTools::calculateLengthInCell(hexCorners, startPoint, endPoint); 
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent(int64_t                    intersectionIdx,
 | 
						|
                                                                WellPathTangentCalculation calculationType) const
 | 
						|
{
 | 
						|
    if (calculationType == TangentFollowWellPathSegments)
 | 
						|
    {
 | 
						|
        cvf::Vec3d segmentStart, segmentEnd;
 | 
						|
        m_wellPath->twoClosestPoints(m_intersections[intersectionIdx], &segmentStart, &segmentEnd);
 | 
						|
        return (segmentEnd - segmentStart).getNormalized();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cvf::Vec3d wellPathTangent;
 | 
						|
        if (intersectionIdx % 2 == 0)
 | 
						|
        {
 | 
						|
            wellPathTangent = m_intersections[intersectionIdx + 1] - m_intersections[intersectionIdx];
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            wellPathTangent = m_intersections[intersectionIdx] - m_intersections[intersectionIdx - 1];
 | 
						|
        }
 | 
						|
        CVF_ASSERT(wellPathTangent.length() > 1.0e-7);
 | 
						|
        return wellPathTangent.getNormalized();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation(const cvf::Vec3d& wellPathTangent,
 | 
						|
                                                                            const caf::Ten3d& tensor)
 | 
						|
{
 | 
						|
    // Create local coordinate system for well path segment
 | 
						|
    cvf::Vec3d local_z = wellPathTangent;
 | 
						|
    cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized();
 | 
						|
    cvf::Vec3d local_y = (local_z ^ local_x).getNormalized();
 | 
						|
    // Calculate the rotation matrix from global i, j, k to local x, y, z.
 | 
						|
    cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes(&local_x, &local_y, &local_z);
 | 
						|
 | 
						|
    return tensor.rotated(rotationMatrix.toMatrix3());
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid(size_t intersectionIdx) const
 | 
						|
{
 | 
						|
    const RigFemPart* femPart = m_caseData->femParts()->part(0);
 | 
						|
    const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
 | 
						|
 | 
						|
    size_t         elmIdx  = m_intersectedCellsGlobIdx[intersectionIdx];
 | 
						|
    RigElementType elmType = femPart->elementType(elmIdx);
 | 
						|
    int elementNodeCount = RigFemTypes::elmentNodeCount(elmType);
 | 
						|
 | 
						|
    const int* elmNodeIndices = femPart->connectivities(elmIdx);
 | 
						|
 | 
						|
    cvf::Vec3f centroid(0.0, 0.0, 0.0);
 | 
						|
    for (int i = 0; i < elementNodeCount; ++i)
 | 
						|
    {
 | 
						|
        centroid += nodeCoords[elmNodeIndices[i]];
 | 
						|
    }
 | 
						|
    return centroid / elementNodeCount;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
double RigGeoMechWellLogExtractor::getWellLogSegmentValue(size_t intersectionIdx, const std::vector<std::pair<double, double>>& wellLogValues) const
 | 
						|
{
 | 
						|
    double startMD, endMD;
 | 
						|
    if (intersectionIdx % 2 == 0)
 | 
						|
    {
 | 
						|
        startMD = m_intersectionMeasuredDepths[intersectionIdx];
 | 
						|
        endMD   = m_intersectionMeasuredDepths[intersectionIdx + 1];
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        startMD = m_intersectionMeasuredDepths [intersectionIdx - 1];
 | 
						|
        endMD = m_intersectionMeasuredDepths[intersectionIdx];
 | 
						|
    }
 | 
						|
 | 
						|
    RiaWeightedMeanCalculator<double> averageCalc;
 | 
						|
    for (auto& depthAndValue : wellLogValues)
 | 
						|
    {
 | 
						|
        if (cvf::Math::valueInRange(depthAndValue.first, startMD, endMD))
 | 
						|
        {
 | 
						|
            cvf::Vec3d position = m_wellPath->interpolatedPointAlongWellPath(depthAndValue.first);
 | 
						|
            cvf::Vec3d centroid(cellCentroid(intersectionIdx));
 | 
						|
            double weight = 1.0;
 | 
						|
            double dist = (position - centroid).length();
 | 
						|
            if (dist > 1.0)
 | 
						|
            {
 | 
						|
                weight = 1.0 / dist;
 | 
						|
            }
 | 
						|
            averageCalc.addValueAndWeight(depthAndValue.second, weight);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (averageCalc.validAggregatedWeight())
 | 
						|
    {
 | 
						|
        return averageCalc.weightedMean();
 | 
						|
    }
 | 
						|
 | 
						|
    return std::numeric_limits<double>::infinity();
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
double RigGeoMechWellLogExtractor::pascalToBar(double pascalValue)
 | 
						|
{
 | 
						|
    return pascalValue * 1.0e-5;
 | 
						|
}
 | 
						|
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
///
 | 
						|
//--------------------------------------------------------------------------------------------------
 | 
						|
template<typename T>
 | 
						|
bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue(size_t intersectionIdx, const std::vector<T>& values, const T& invalidValue, T* averagedCellValue) const
 | 
						|
{
 | 
						|
    CVF_ASSERT(values.size() >= 2);
 | 
						|
    
 | 
						|
    *averagedCellValue = invalidValue;
 | 
						|
 | 
						|
    T value1, value2;
 | 
						|
    cvf::Vec3d centroid(cellCentroid(intersectionIdx));
 | 
						|
    double dist1 = 0.0, dist2 = 0.0;
 | 
						|
    if (intersectionIdx % 2 == 0)
 | 
						|
    {
 | 
						|
        value1 = values[intersectionIdx];
 | 
						|
        value2 = values[intersectionIdx + 1];
 | 
						|
 | 
						|
        dist1 = (centroid - m_intersections[intersectionIdx]).length();
 | 
						|
        dist2 = (centroid - m_intersections[intersectionIdx + 1]).length();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        value1 = values[intersectionIdx - 1];
 | 
						|
        value2 = values[intersectionIdx];
 | 
						|
 | 
						|
        dist1 = (centroid - m_intersections[intersectionIdx - 1]).length();
 | 
						|
        dist2 = (centroid - m_intersections[intersectionIdx]).length();
 | 
						|
    }
 | 
						|
 | 
						|
    if (invalidValue == value1 || invalidValue == value2)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    RiaWeightedMeanCalculator<T> averageCalc;
 | 
						|
    averageCalc.addValueAndWeight(value1, dist2);
 | 
						|
    averageCalc.addValueAndWeight(value2, dist1);
 | 
						|
    if (averageCalc.validAggregatedWeight())
 | 
						|
    {
 | 
						|
        *averagedCellValue = averageCalc.weightedMean();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 |