ResInsight/ApplicationLibCode/UnitTests/cvfGeometryTools-Test.cpp
2021-01-11 15:27:45 +01:00

575 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "gtest/gtest.h"
#include "cvfLibCore.h"
#include "cvfLibGeometry.h"
#include "cvfLibRender.h"
#include "cvfLibViewing.h"
#include "cvfArrayWrapperConst.h"
#include "cvfArrayWrapperToEdit.h"
#include "cvfBoundingBoxTree.h"
#include "cvfGeometryTools.h"
#include <array>
using namespace cvf;
#if 0
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void ControlVolume::calculateCubeFaceStatus(const cvf::Vec3dArray& nodeCoords, double areaTolerance)
{
int cubeFace;
cvf::uint cubeFaceIndices[4];
for (cubeFace = 0; cubeFace < 6; ++cubeFace)
{
surfaceNodeIndices(static_cast<Defines::CubeFace>(cubeFace), cubeFaceIndices);
std::vector<const brv::Connection*> conns;
connections(static_cast<Defines::CubeFace>(cubeFace), &conns);
if (!conns.size())
{
m_cubeFaceStatus[cubeFace] = FREE_FACE;
}
else
{
double area = 0.5 * (nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[0]] ^ nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[0]]).length();
area += 0.5 * (nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[2]] ^ nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[2]]).length();
double totConnectionArea = 0;
size_t i;
for (i = 0; i < conns.size(); ++i)
{
totConnectionArea += conns[i]->brfArea();
}
if ( totConnectionArea < area - areaTolerance )
{
m_cubeFaceStatus[cubeFace] = PARTIALLY_COVERED;
}
else
{
m_cubeFaceStatus[cubeFace] = COMPLETELY_COVERED;
}
}
// Create a polygon to store the complete polygon of the faces
// not completely covered by connections
// This polygon will be filled with nodes later
if (m_cubeFaceStatus[cubeFace] != COMPLETELY_COVERED )
{
m_freeFacePolygons[cubeFace] = new std::list<std::pair<cvf::uint, bool> >;
}
}
}
#endif
template <typename NodeArrayType, typename NodeType, typename IndexType>
NodeType quadNormal( ArrayWrapperConst<NodeArrayType, NodeType> nodeCoords, const IndexType cubeFaceIndices[4] )
{
return ( nodeCoords[cubeFaceIndices[2]] - nodeCoords[cubeFaceIndices[0]] ) ^
( nodeCoords[cubeFaceIndices[3]] - nodeCoords[cubeFaceIndices[1]] );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> createVertices()
{
std::vector<cvf::Vec3d> vxs;
vxs.resize( 14, cvf::Vec3d::ZERO );
// clang-format off
vxs[ 0]= cvf::Vec3d( 0 , 0 , 0 );
vxs[ 1]= cvf::Vec3d( 1 , 0 , 0 );
vxs[ 2]= cvf::Vec3d( 1 , 1 , 0 );
vxs[ 3]= cvf::Vec3d( 0 , 1 , 0 );
vxs[ 4]= cvf::Vec3d(-0.4 ,-0.2 , 0.0 );
vxs[ 5]= cvf::Vec3d( 0.4 , 0.6 , 0.0 );
vxs[ 6]= cvf::Vec3d( 0.8 , 0.2 , 0.0 );
vxs[ 7]= cvf::Vec3d( 0.0 ,-0.6 , 0.0 );
vxs[ 8]= cvf::Vec3d( 1.0 , 1.2 , 0.0 );
vxs[ 9]= cvf::Vec3d( 1.4 , 0.8 , 0.0 );
vxs[10]= cvf::Vec3d( 0.4 ,-0.2 , 0.0 );
vxs[11]= cvf::Vec3d( 1.2 , 0.6 , 0.0 );
vxs[12]= cvf::Vec3d( 1.6 , 0.2 , 0.0 );
vxs[13]= cvf::Vec3d( 0.8 ,-0.6 , 0.0 );
// clang-format on
return vxs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::array<cvf::uint, 4>> getCubeFaces()
{
std::vector<std::array<cvf::uint, 4>> cubeFaces;
cubeFaces.resize( 4 );
cubeFaces[0] = { 0, 1, 2, 3 };
cubeFaces[1] = { 4, 5, 6, 7 };
cubeFaces[2] = { 5, 8, 9, 6 };
cubeFaces[3] = { 10, 11, 12, 13 };
return cubeFaces;
}
std::ostream& operator<<( std::ostream& stream, std::vector<cvf::uint> v )
{
for ( size_t i = 0; i < v.size(); ++i )
{
stream << v[i] << " ";
}
return stream;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( CellFaceIntersectionTst, Intersection1 )
{
std::vector<cvf::Vec3d> nodes = createVertices();
std::vector<cvf::Vec3d> additionalVertices;
std::vector<std::vector<cvf::uint>> overlapPolygons;
auto faces = getCubeFaces();
EdgeIntersectStorage<cvf::uint> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount( nodes.size() );
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
faces[0].data(),
faces[1].data(),
1e-6 );
EXPECT_EQ( (size_t)5, polygon.size() );
EXPECT_EQ( (size_t)2, additionalVertices.size() );
EXPECT_TRUE( isOk );
overlapPolygons.push_back( polygon );
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
faces[0].data(),
faces[2].data(),
1e-6 );
EXPECT_EQ( (size_t)5, polygon.size() );
EXPECT_EQ( (size_t)4, additionalVertices.size() );
EXPECT_TRUE( isOk );
overlapPolygons.push_back( polygon );
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
faces[0].data(),
faces[3].data(),
1e-6 );
EXPECT_EQ( (size_t)3, polygon.size() );
EXPECT_EQ( (size_t)6, additionalVertices.size() );
EXPECT_TRUE( isOk );
overlapPolygons.push_back( polygon );
std::cout << polygon << std::endl;
}
nodes.insert( nodes.end(), additionalVertices.begin(), additionalVertices.end() );
std::vector<cvf::uint> basePolygon;
basePolygon.insert( basePolygon.begin(), faces[0].data(), &( faces[0].data()[4] ) );
for ( cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx )
{
GeometryTools::insertVertexInPolygon( &basePolygon, wrapArrayConst( &nodes ), vxIdx, 1e-6 );
}
EXPECT_EQ( (size_t)8, basePolygon.size() );
std::cout << "Bp: " << basePolygon << std::endl;
for ( size_t pIdx = 0; pIdx < overlapPolygons.size(); ++pIdx )
{
for ( cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx )
{
GeometryTools::insertVertexInPolygon( &overlapPolygons[pIdx], wrapArrayConst( &nodes ), vxIdx, 1e-6 );
}
if ( pIdx == 0 )
{
EXPECT_EQ( (size_t)5, overlapPolygons[pIdx].size() );
}
if ( pIdx == 1 )
{
EXPECT_EQ( (size_t)5, overlapPolygons[pIdx].size() );
}
if ( pIdx == 2 )
{
EXPECT_EQ( (size_t)4, overlapPolygons[pIdx].size() );
}
std::cout << "Op" << pIdx << ":" << overlapPolygons[pIdx] << std::endl;
}
Vec3d normal = quadNormal( wrapArrayConst( &nodes ), faces[0].data() );
std::vector<bool> faceOverlapPolygonWindingSameAsCubeFaceFlags;
faceOverlapPolygonWindingSameAsCubeFaceFlags.resize( overlapPolygons.size(), true );
{
std::vector<cvf::uint> freeFacePolygon;
bool hasHoles = false;
std::vector<std::vector<cvf::uint>*> overlapPolygonPtrs;
for ( size_t pIdx = 0; pIdx < overlapPolygons.size(); ++pIdx )
{
overlapPolygonPtrs.push_back( &( overlapPolygons[pIdx] ) );
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon( wrapArrayConst( &nodes ),
wrapArrayConst( &basePolygon ),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles );
EXPECT_EQ( (size_t)4, freeFacePolygon.size() );
EXPECT_FALSE( hasHoles );
std::cout << "FF1: " << freeFacePolygon << std::endl;
}
{
std::vector<cvf::uint> freeFacePolygon;
bool hasHoles = false;
std::vector<std::vector<cvf::uint>*> overlapPolygonPtrs;
for ( size_t pIdx = 0; pIdx < 1; ++pIdx )
{
overlapPolygonPtrs.push_back( &( overlapPolygons[pIdx] ) );
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon( wrapArrayConst( &nodes ),
wrapArrayConst( &basePolygon ),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles );
EXPECT_EQ( (size_t)9, freeFacePolygon.size() );
EXPECT_FALSE( hasHoles );
std::cout << "FF2: " << freeFacePolygon << std::endl;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( CellFaceIntersectionTst, Intersection )
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = { 0, 1, 2, 3 };
size_t cv2CubeFaceIndices[4] = { 4, 5, 6, 7 };
nodes.resize( 8 );
nodes.setAll( cvf::Vec3d( 0, 0, 0 ) );
EdgeIntersectStorage<size_t> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount( nodes.size() );
// Face 1
nodes[0] = cvf::Vec3d( 0, 0, 0 );
nodes[1] = cvf::Vec3d( 1, 0, 0 );
nodes[2] = cvf::Vec3d( 1, 1, 0 );
nodes[3] = cvf::Vec3d( 0, 1, 0 );
// Face 2
nodes[4] = cvf::Vec3d( 0, 0, 0 );
nodes[5] = cvf::Vec3d( 1, 0, 0 );
nodes[6] = cvf::Vec3d( 1, 1, 0 );
nodes[7] = cvf::Vec3d( 0, 1, 0 );
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6 );
EXPECT_EQ( (size_t)4, polygon.size() );
EXPECT_EQ( (size_t)0, additionalVertices.size() );
EXPECT_TRUE( isOk );
// Face 1
nodes[0] = cvf::Vec3d( 0, 0, 0 );
nodes[1] = cvf::Vec3d( 1, 0, 0 );
nodes[2] = cvf::Vec3d( 1, 1, 0 );
nodes[3] = cvf::Vec3d( 0, 1, 0 );
// Face 2
nodes[4] = cvf::Vec3d( 0.5, -0.25, 0 );
nodes[5] = cvf::Vec3d( 1.25, 0.5, 0 );
nodes[6] = cvf::Vec3d( 0.5, 1.25, 0 );
nodes[7] = cvf::Vec3d( -0.25, 0.5, 0 );
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6 );
EXPECT_EQ( (size_t)8, polygon.size() );
EXPECT_EQ( (size_t)8, additionalVertices.size() );
EXPECT_TRUE( isOk );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( CellFaceIntersectionTst, FreeFacePolygon )
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = { 0, 1, 2, 3 };
size_t cv2CubeFaceIndices[4] = { 4, 5, 6, 7 };
nodes.resize( 8 );
nodes.setAll( cvf::Vec3d( 0, 0, 0 ) );
EdgeIntersectStorage<size_t> edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount( nodes.size() );
// Face 1
nodes[0] = cvf::Vec3d( 0, 0, 0 );
nodes[1] = cvf::Vec3d( 1, 0, 0 );
nodes[2] = cvf::Vec3d( 1, 1, 0 );
nodes[3] = cvf::Vec3d( 0, 1, 0 );
// Face 2
nodes[4] = cvf::Vec3d( 0, 0, 0 );
nodes[5] = cvf::Vec3d( 1, 0, 0 );
nodes[6] = cvf::Vec3d( 1, 1, 0 );
nodes[7] = cvf::Vec3d( 0, 1, 0 );
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6 );
EXPECT_EQ( (size_t)4, polygon.size() );
EXPECT_EQ( (size_t)0, additionalVertices.size() );
EXPECT_TRUE( isOk );
std::vector<bool> faceOverlapPolygonWinding;
std::vector<std::vector<size_t>*> faceOverlapPolygons;
faceOverlapPolygons.push_back( &polygon );
faceOverlapPolygonWinding.push_back( true );
std::vector<size_t> partialFacePolygon;
bool hasHoles = false;
GeometryTools::calculatePartiallyFreeCubeFacePolygon( wrapArrayConst( &nodes ),
wrapArrayConst( cv1CubeFaceIndices, 4 ),
Vec3d( 0, 0, 1 ),
faceOverlapPolygons,
faceOverlapPolygonWinding,
&partialFacePolygon,
&hasHoles );
// Face 1
nodes[0] = cvf::Vec3d( 0, 0, 0 );
nodes[1] = cvf::Vec3d( 1, 0, 0 );
nodes[2] = cvf::Vec3d( 1, 1, 0 );
nodes[3] = cvf::Vec3d( 0, 1, 0 );
// Face 2
nodes[4] = cvf::Vec3d( 0.5, -0.25, 0 );
nodes[5] = cvf::Vec3d( 1.25, 0.5, 0 );
nodes[6] = cvf::Vec3d( 0.5, 1.25, 0 );
nodes[7] = cvf::Vec3d( -0.25, 0.5, 0 );
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst( &nodes ),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6 );
EXPECT_EQ( (size_t)8, polygon.size() );
EXPECT_EQ( (size_t)8, additionalVertices.size() );
EXPECT_TRUE( isOk );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( CellFaceIntersectionTst, PolygonAreaNormal3D )
{
// Test special cases with zero area
{
std::vector<cvf::Vec3d> vxs;
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_TRUE( area == cvf::Vec3d::ZERO );
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_TRUE( area == cvf::Vec3d::ZERO );
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 1 } );
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_TRUE( area == cvf::Vec3d::ZERO );
}
// Three points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 1 } );
vxs.push_back( { 0, 1, 1 } );
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_DOUBLE_EQ( -0.5, area.x() );
EXPECT_DOUBLE_EQ( 0.0, area.y() );
EXPECT_DOUBLE_EQ( 0.0, area.z() );
}
// four identical points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 0 } );
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_TRUE( area == cvf::Vec3d::ZERO );
}
// Square of four points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 1 } );
vxs.push_back( { 0, 1, 1 } );
vxs.push_back( { 0, 1, 0 } );
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_DOUBLE_EQ( -1.0, area.x() );
EXPECT_DOUBLE_EQ( 0.0, area.y() );
EXPECT_DOUBLE_EQ( 0.0, area.z() );
}
// Square of four points + one point in center of square
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back( { 0, 0, 0 } );
vxs.push_back( { 0, 0, 1 } );
vxs.push_back( { 0, 1, 1 } );
vxs.push_back( { 0, 1, 0 } );
vxs.push_back( { 0, 0.5, 0.5 } ); // center of square
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D( vxs );
EXPECT_DOUBLE_EQ( -0.75, area.x() );
EXPECT_DOUBLE_EQ( 0.0, area.y() );
EXPECT_DOUBLE_EQ( 0.0, area.z() );
}
}
TEST( EarClipTesselator, ErrorTest )
{
std::vector<cvf::Vec3d> remainingPolygon{
cvf::Vec3d( 44.66, 20.17, 0 ),
cvf::Vec3d( 78.08, 35.26, 0 ),
cvf::Vec3d( 93.97, 35.83, 0 ),
cvf::Vec3d( 144.95, 44.42, 0 ),
cvf::Vec3d( 172.59, 39.73, 0 ),
cvf::Vec3d( 227.27, 24.01, 0 ),
cvf::Vec3d( 217.46, 45.72, 0 ),
cvf::Vec3d( 178.5, 57.61, 0 ),
cvf::Vec3d( 141.33, 63.82, 0 ),
cvf::Vec3d( 0, 0, 0 ),
cvf::Vec3d( 63.77, 0, 0 ),
};
double nativeTriangleArea = 21266;
cvf::EarClipTesselator tess;
tess.setNormal( cvf::Vec3d::Z_AXIS );
tess.setMinTriangleArea( 1e-3 * nativeTriangleArea );
cvf::Vec3dArray cvfNodes( remainingPolygon );
tess.setGlobalNodeArray( cvfNodes );
std::vector<size_t> polyIndexes;
for ( size_t idx = 0; idx < remainingPolygon.size(); ++idx )
{
polyIndexes.push_back( idx );
}
tess.setPolygonIndices( polyIndexes );
std::vector<size_t> triangleIndices;
bool isTesselationOk = tess.calculateTriangles( &triangleIndices );
// CVF_ASSERT( isTesselationOk );
if ( !isTesselationOk )
{
// continue;
}
}