ResInsight/ApplicationCode/ReservoirDataModel/RigCellFaceGeometryTools.cpp

345 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCellFaceGeometryTools.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RigNncConnection.h"
#include "cvfGeometryTools.h"
#include "cafAssert.h"
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::StructGridInterface::FaceType
RigCellFaceGeometryTools::calculateCellFaceOverlap( const RigCell& c1,
const RigCell& c2,
const RigMainGrid& mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections )
{
// Try to find the shared face
bool isPossibleNeighborInDirection[6] = {true, true, true, true, true, true};
if ( c1.hostGrid() == c2.hostGrid() )
{
char hasNeighbourInAnyDirection = 0;
size_t i1, j1, k1;
c1.hostGrid()->ijkFromCellIndex( c1.gridLocalCellIndex(), &i1, &j1, &k1 );
size_t i2, j2, k2;
c2.hostGrid()->ijkFromCellIndex( c2.gridLocalCellIndex(), &i2, &j2, &k2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ( ( i1 + 1 ) == i2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ( ( i2 + 1 ) == i1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ( ( j1 + 1 ) == j2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ( ( j2 + 1 ) == j1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ( ( k1 + 1 ) == k2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ( ( k2 + 1 ) == k1 );
hasNeighbourInAnyDirection = isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K];
// If cell 2 is not adjancent with respect to any of the six ijk directions,
// assume that we have no overlapping area.
if ( !hasNeighbourInAnyDirection )
{
// Add to search map
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) +
// " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
return cvf::StructGridInterface::NO_FACE;
}
}
for ( unsigned char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( !isPossibleNeighborInDirection[fIdx] )
{
continue;
}
// Calculate connection polygon
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> face1;
std::array<size_t, 4> face2;
c1.faceIndices( ( cvf::StructGridInterface::FaceType )( fIdx ), &face1 );
c2.faceIndices( cvf::StructGridInterface::oppositeFace( ( cvf::StructGridInterface::FaceType )( fIdx ) ), &face2 );
bool foundOverlap =
cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst( &mainGrid.nodes() ),
face1.data(),
face2.data(),
1e-6 );
if ( foundOverlap )
{
if ( connectionPolygon ) ( *connectionPolygon ) = polygon;
if ( connectionIntersections ) ( *connectionIntersections ) = intersections;
return ( cvf::StructGridInterface::FaceType )( fIdx );
}
}
return cvf::StructGridInterface::NO_FACE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigConnection> RigCellFaceGeometryTools::computeOtherNncs( const RigMainGrid* mainGrid,
const std::vector<RigConnection>& nativeConnections )
{
// Compute Non-Neighbor Connections (NNC) not reported by Eclipse. NNCs with zero transmissibility are not reported
// by Eclipse. Use faults as basis for subset of cells to find NNC connection for. The imported connections from
// Eclipse are located at the beginning of the connections vector.
std::vector<RigConnection> otherConnections;
class CellPair
{
public:
CellPair( size_t globalIdx1, size_t globalIdx2 )
{
if ( globalIdx1 < globalIdx2 )
{
m_globalCellIdx1 = globalIdx1;
m_globalCellIdx2 = globalIdx2;
}
else
{
m_globalCellIdx1 = globalIdx2;
m_globalCellIdx2 = globalIdx1;
}
}
bool operator<( const CellPair& other ) const
{
if ( m_globalCellIdx1 != other.m_globalCellIdx1 )
{
return m_globalCellIdx1 < other.m_globalCellIdx1;
}
return ( m_globalCellIdx2 < other.m_globalCellIdx2 );
}
private:
size_t m_globalCellIdx1;
size_t m_globalCellIdx2;
};
std::set<CellPair> nativeCellPairs;
for ( const auto& c : nativeConnections )
{
nativeCellPairs.emplace( CellPair( c.m_c1GlobIdx, c.m_c2GlobIdx ) );
}
if ( nativeConnections.size() != nativeCellPairs.size() )
{
QString message = QString( "Nnc connection imported from Eclipse are not unique\nNNC count : %1\nUnique : %2" )
.arg( nativeConnections.size() )
.arg( nativeCellPairs.size() );
qDebug() << message;
}
std::set<CellPair> otherCellPairs;
const cvf::Collection<RigFault>& faults = mainGrid->faults();
for ( size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++ )
{
const RigFault* fault = faults.at( faultIdx );
const std::vector<RigFault::FaultFace>& faultFaces = fault->faultFaces();
#pragma omp parallel for
for ( int faceIdx = 0; faceIdx < static_cast<int>( faultFaces.size() ); faceIdx++ )
{
const RigFault::FaultFace& f = faultFaces[faceIdx];
size_t sourceReservoirCellIndex = f.m_nativeReservoirCellIndex;
cvf::StructGridInterface::FaceType sourceCellFace = f.m_nativeFace;
const std::vector<cvf::Vec3d>& mainGridNodes = mainGrid->nodes();
cvf::BoundingBox bb;
std::array<size_t, 4> sourceFaceIndices;
mainGrid->globalCellArray()[sourceReservoirCellIndex].faceIndices( sourceCellFace, &sourceFaceIndices );
bb.add( mainGridNodes[sourceFaceIndices[0]] );
bb.add( mainGridNodes[sourceFaceIndices[1]] );
bb.add( mainGridNodes[sourceFaceIndices[2]] );
bb.add( mainGridNodes[sourceFaceIndices[3]] );
std::vector<size_t> closeCells;
mainGrid->findIntersectingCells( bb, &closeCells );
cvf::StructGridInterface::FaceType candidateFace = cvf::StructGridInterface::oppositeFace( sourceCellFace );
size_t neighborCellIndex = std::numeric_limits<size_t>::max();
size_t ni = std::numeric_limits<size_t>::max();
size_t nj = std::numeric_limits<size_t>::max();
size_t nk = std::numeric_limits<size_t>::max();
{
size_t i;
size_t j;
size_t k;
mainGrid->ijkFromCellIndex( sourceReservoirCellIndex, &i, &j, &k );
mainGrid->neighborIJKAtCellFace( i, j, k, sourceCellFace, &ni, &nj, &nk );
if ( mainGrid->isCellValid( ni, nj, nk ) )
{
neighborCellIndex = mainGrid->cellIndexFromIJK( ni, nj, nk );
}
}
for ( size_t candidateCellIndex : closeCells )
{
if ( candidateCellIndex == sourceReservoirCellIndex )
{
// Exclude cellIndex for source cell
continue;
}
if ( candidateCellIndex == neighborCellIndex )
{
// Exclude direct neighbor
continue;
}
if ( neighborCellIndex != std::numeric_limits<size_t>::max() )
{
// Find target IJK index based on source cell and cell face
// Exclude cells not matching destination target index
size_t ci = std::numeric_limits<size_t>::max();
size_t cj = std::numeric_limits<size_t>::max();
size_t ck = std::numeric_limits<size_t>::max();
mainGrid->ijkFromCellIndex( candidateCellIndex, &ci, &cj, &ck );
auto gridAxis = cvf::StructGridInterface::gridAxisFromFace( sourceCellFace );
if ( gridAxis == cvf::StructGridInterface::GridAxisType::AXIS_I )
{
if ( ni != ci )
{
continue;
}
}
else if ( gridAxis == cvf::StructGridInterface::GridAxisType::AXIS_J )
{
if ( nj != cj )
{
continue;
}
}
else if ( gridAxis == cvf::StructGridInterface::GridAxisType::AXIS_K )
{
if ( nk != ck )
{
continue;
}
}
}
CellPair candidate( sourceReservoirCellIndex, candidateCellIndex );
if ( nativeCellPairs.count( candidate ) > 0 )
{
continue;
}
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> candidateFaceIndices;
mainGrid->globalCellArray()[candidateCellIndex].faceIndices( candidateFace, &candidateFaceIndices );
bool foundOverlap =
cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst( &mainGridNodes ),
sourceFaceIndices.data(),
candidateFaceIndices.data(),
1e-6 );
if ( foundOverlap )
{
RigConnection conn;
conn.m_c1GlobIdx = sourceReservoirCellIndex;
conn.m_c1Face = sourceCellFace;
conn.m_c2GlobIdx = candidateCellIndex;
conn.m_polygon = RigCellFaceGeometryTools::extractPolygon( mainGridNodes, polygon, intersections );
#pragma omp critical( critical_section_nnc_computations )
{
auto itBoolPair = otherCellPairs.insert( candidate );
if ( itBoolPair.second )
{
otherConnections.emplace_back( conn );
}
}
}
}
}
}
return otherConnections;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigCellFaceGeometryTools::extractPolygon( const std::vector<cvf::Vec3d>& nativeNodes,
const std::vector<size_t>& connectionPolygon,
const std::vector<cvf::Vec3d>& connectionIntersections )
{
std::vector<cvf::Vec3d> allPolygonNodes;
for ( size_t polygonIndex : connectionPolygon )
{
if ( polygonIndex < nativeNodes.size() )
allPolygonNodes.push_back( nativeNodes[polygonIndex] );
else
allPolygonNodes.push_back( connectionIntersections[polygonIndex - nativeNodes.size()] );
}
return allPolygonNodes;
}