mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-21 22:13:25 -06:00
4ddacad385
Caveats: * Hard coded poissonRatio = 0.25 * Hard coded UCS to 100 bar (fairly close to average value for shale in literature).
991 lines
39 KiB
C++
991 lines
39 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <cmath>
|
|
|
|
|
|
#pragma warning (disable : 4503)
|
|
namespace cvf
|
|
{
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename DataType>
|
|
DataType GeometryTools::interpolateQuad(const cvf::Vec3d& v1, DataType s1,
|
|
const cvf::Vec3d& v2, DataType s2,
|
|
const cvf::Vec3d& v3, DataType s3,
|
|
const cvf::Vec3d& v4, DataType s4,
|
|
const cvf::Vec3d& point)
|
|
{
|
|
cvf::Vec4d bc = barycentricCoords(v1, v2, v3, v4, point);
|
|
|
|
return s1 * bc[0] + s2 * bc[1] + s3 * bc[2] + s4 * bc[3];
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Inserts the vertex into the polygon if it fits along one of the edges within the tolerance.
|
|
/// The method returns true if it was inserted, or if it was already in the polygon, or if it was
|
|
/// within the tolerance of an existing vertex in the polygon.
|
|
/// In the latter situation it replaces the previous vertex in the polygon.
|
|
///
|
|
/// Todo: If a vertex is replaced, the VxToCv map in TimeStepGeometry should be updated
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename VerticeArrayType, typename IndexType>
|
|
bool GeometryTools::insertVertexInPolygon( std::vector<IndexType> * polygon,
|
|
ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodeCoords,
|
|
IndexType vertexIndex,
|
|
double tolerance)
|
|
{
|
|
CVF_ASSERT(polygon);
|
|
|
|
|
|
// Check if vertex is directly included already
|
|
|
|
for(typename std::vector<IndexType>::iterator it = polygon->begin(); it != polygon->end(); ++it)
|
|
{
|
|
if (*it == vertexIndex) return true;
|
|
}
|
|
|
|
#if 1
|
|
// Check if the new point is within tolerance of one of the polygon vertices
|
|
|
|
bool existsOrInserted = false;
|
|
for(typename std::vector<IndexType>::iterator it = polygon->begin(); it != polygon->end(); ++it)
|
|
{
|
|
if ( (nodeCoords[*it] - nodeCoords[vertexIndex]).length() < tolerance)
|
|
{
|
|
if (vertexIndex < *it) *it = vertexIndex;
|
|
existsOrInserted = true;
|
|
}
|
|
}
|
|
|
|
if (existsOrInserted) return true;
|
|
#endif
|
|
|
|
|
|
// Copy the start polygon to a list
|
|
|
|
std::list<IndexType> listPolygon;
|
|
for (size_t pcIdx = 0; pcIdx < polygon->size(); ++pcIdx)
|
|
{
|
|
listPolygon.push_back((*polygon)[pcIdx]);
|
|
}
|
|
|
|
// Insert vertex in polygon if the distance to one of the edges is small enough
|
|
|
|
typename std::list<IndexType >::iterator it2;
|
|
typename std::list<IndexType >::iterator insertBefore;
|
|
|
|
for (typename std::list<IndexType >::iterator it = listPolygon.begin(); it != listPolygon.end(); ++it)
|
|
{
|
|
it2 = it;
|
|
++it2; insertBefore = it2; if (it2 == listPolygon.end()) it2 = listPolygon.begin();
|
|
|
|
double sqDistToLine = GeometryTools::linePointSquareDist(nodeCoords[*it], nodeCoords[*it2], nodeCoords[vertexIndex]);
|
|
if (fabs(sqDistToLine) < tolerance*tolerance )
|
|
{
|
|
it = listPolygon.insert(insertBefore, vertexIndex);
|
|
existsOrInserted = true;
|
|
}
|
|
}
|
|
|
|
// Write polygon back into the vector
|
|
|
|
polygon->clear();
|
|
for (typename std::list<IndexType >::iterator it = listPolygon.begin(); it != listPolygon.end(); ++it)
|
|
{
|
|
polygon->push_back(*it);
|
|
}
|
|
|
|
return existsOrInserted;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// \brief Test if a point touches a polygon within the specified tolerance
|
|
///
|
|
/// \param polygonNorm Polygon normal
|
|
/// \param pPolygonVerts Array of polygon vertice coordinates
|
|
/// \param piVertexIndices Array of integer node indices for this polygon
|
|
/// \param iNumVerts Number of vertices in polygon
|
|
/// \param point The point to be checked
|
|
/// \param tolerance Tolerance in length
|
|
/// \param touchedEdgeIndex returns -1 if point is inside, and edge index if point touches an edge.
|
|
/// \return true if point lies inside or on the border of the polygon.
|
|
///
|
|
/// \assumpt Assumes that the polygon is planar
|
|
/// \comment First check if point is on an edge, Then check if it is inside by
|
|
/// counting the number of times a ray from point along positive X axis
|
|
/// crosses an edge. Odd number says inside.
|
|
/// \author SP (really by Eric Haines) and JJS
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename VerticeArrayType, typename PolygonArrayType, typename IndexType>
|
|
bool GeometryTools::isPointTouchingIndexedPolygon( const cvf::Vec3d& polygonNormal,
|
|
cvf::ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> vertices,
|
|
cvf::ArrayWrapperConst<PolygonArrayType, IndexType> indices,
|
|
const cvf::Vec3d& point,
|
|
int* touchedEdgeIndex,
|
|
double tolerance)
|
|
{
|
|
size_t numIndices = indices.size();
|
|
|
|
int Z = findClosestAxis(polygonNormal);
|
|
int X = (Z + 1) % 3;
|
|
int Y = (Z + 2) % 3;
|
|
|
|
int crossings;
|
|
|
|
int xBelowVx0;
|
|
int yBelowVx0;
|
|
int yBelowVx1 = 0;
|
|
|
|
const double* vtx0;
|
|
const double* vtx1 = nullptr;
|
|
|
|
double dv0;
|
|
|
|
cvf::uint j;
|
|
|
|
// Check if point is on an edge or vertex
|
|
size_t firstIdx;
|
|
size_t secondIdx;
|
|
|
|
CVF_TIGHT_ASSERT(touchedEdgeIndex);
|
|
|
|
*touchedEdgeIndex = -1;
|
|
for (firstIdx = 0, secondIdx = 1; firstIdx < numIndices; ++firstIdx, ++secondIdx)
|
|
{
|
|
if (secondIdx >= numIndices) secondIdx = 0;
|
|
const cvf::Vec3d& vx0 = vertices[indices[firstIdx]];
|
|
const cvf::Vec3d& vx1 = vertices[indices[secondIdx]];
|
|
|
|
double sqDist = GeometryTools::linePointSquareDist(vx0, vx1, point);
|
|
if (sqDist < tolerance*tolerance)
|
|
{
|
|
*touchedEdgeIndex = static_cast<int>(firstIdx);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
vtx0 = vertices[indices[numIndices-1]].ptr();
|
|
|
|
// get test bit for above/below Y axis. Y of Point is under Y of vtx0
|
|
yBelowVx0 = ( dv0 = vtx0[Y] - point[Y] ) >= 0.0;
|
|
|
|
crossings = 0;
|
|
for (j = 0; j < numIndices; j++)
|
|
{
|
|
// cleverness: bobble between filling endpoints of edges, so that the previous edge's shared endpoint is maintained.
|
|
if (j & 0x1)
|
|
{
|
|
vtx0 = vertices[indices[j]].ptr();
|
|
yBelowVx0 = (dv0 = vtx0[Y] - point[Y]) >= 0.0;
|
|
}
|
|
else
|
|
{
|
|
vtx1 = vertices[indices[j]].ptr();
|
|
yBelowVx1 = (vtx1[Y] >= point[Y]);
|
|
}
|
|
|
|
// check if Y of point is between Y of Vx0 and Vx1
|
|
if (yBelowVx0 != yBelowVx1)
|
|
{
|
|
// check if X of point is not between X of Vx0 and Vx1
|
|
if ( (xBelowVx0 = (vtx0[X] >= point[X])) == (vtx1[X] >= point[X]) )
|
|
{
|
|
if (xBelowVx0) crossings++;
|
|
}
|
|
else
|
|
{
|
|
// compute intersection of polygon segment with X ray, note if > point's X.
|
|
crossings += (vtx0[X] - dv0*(vtx1[X] - vtx0[X])/(vtx1[Y] - vtx0[Y])) >= point[X];
|
|
}
|
|
}
|
|
}
|
|
|
|
// test if crossings is odd. If we care about its winding number > 0, then just: inside_flag = crossings > 0;
|
|
if (crossings & 0x01) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Returns true if we get an actual polygon
|
|
/// The returned polygon will keep the winding from the first face.
|
|
/// The second face must have opposite winding of the first
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename VerticeArrayType, typename IndexType>
|
|
bool GeometryTools::calculateOverlapPolygonOfTwoQuads(std::vector<IndexType> * polygon,
|
|
std::vector<cvf::Vec3d>* createdVertexes,
|
|
EdgeIntersectStorage<IndexType>* edgeIntersectionStorage,
|
|
ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodes,
|
|
const IndexType cv1CubeFaceIndices[4],
|
|
const IndexType cv2CubeFaceIndices[4],
|
|
double tolerance)
|
|
{
|
|
CVF_ASSERT(polygon);
|
|
CVF_ASSERT(createdVertexes);
|
|
|
|
// Topology analysis
|
|
|
|
IndexType newVertexIndex = static_cast<IndexType>(nodes.size() + createdVertexes->size());
|
|
|
|
bool cv1VxTouchCv2[4] = { false, false, false, false };
|
|
bool cv2VxTouchCv1[4] = { false, false, false, false };
|
|
int cv1VxTouchCv2Edge[4] = { -1, -1, -1, -1 };
|
|
int cv2VxTouchCv1Edge[4] = { -1, -1, -1, -1 };
|
|
|
|
int cv1Idx, cv2Idx;
|
|
int numMatchedNodes = 0;
|
|
|
|
// First check for complete topological match.
|
|
|
|
for (cv1Idx = 0 ; cv1Idx < 4 ; ++cv1Idx)
|
|
{
|
|
for (cv2Idx = 0; cv2Idx < 4; ++cv2Idx)
|
|
{
|
|
if (cv1CubeFaceIndices[cv1Idx] == cv2CubeFaceIndices[cv2Idx])
|
|
{
|
|
cv1VxTouchCv2[cv1Idx] = true;
|
|
cv2VxTouchCv1[cv2Idx] = true;
|
|
++numMatchedNodes;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (numMatchedNodes >= 4) // Todo: Handle collapsed cells
|
|
{
|
|
int k;
|
|
for (k = 0; k < 4; ++k)
|
|
{
|
|
polygon->push_back(cv1CubeFaceIndices[k]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
cvf::Vec3d diag1 = nodes[cv1CubeFaceIndices[2]] - nodes[cv1CubeFaceIndices[0]];
|
|
cvf::Vec3d diag2 = nodes[cv1CubeFaceIndices[3]] - nodes[cv1CubeFaceIndices[1]];
|
|
cvf::Vec3d normal = diag1^diag2;
|
|
int numCv1VxesOnCv2 = numMatchedNodes;
|
|
int numCv2VxesOnCv1 = numMatchedNodes;
|
|
|
|
for (cv1Idx = 0 ; cv1Idx < 4 ; ++cv1Idx)
|
|
{
|
|
if (!cv1VxTouchCv2[cv1Idx])
|
|
{
|
|
cv1VxTouchCv2[cv1Idx] = GeometryTools::isPointTouchingIndexedPolygon(normal,
|
|
nodes,
|
|
wrapArrayConst(cv2CubeFaceIndices, 4),
|
|
nodes[cv1CubeFaceIndices[cv1Idx]],
|
|
&(cv1VxTouchCv2Edge[cv1Idx]),
|
|
tolerance);
|
|
if (cv1VxTouchCv2[cv1Idx]) ++numCv1VxesOnCv2;
|
|
}
|
|
|
|
if (!cv2VxTouchCv1[cv1Idx])
|
|
{
|
|
cv2VxTouchCv1[cv1Idx] = GeometryTools::isPointTouchingIndexedPolygon(normal,
|
|
nodes,
|
|
wrapArrayConst(cv1CubeFaceIndices, 4),
|
|
nodes[cv2CubeFaceIndices[cv1Idx]],
|
|
&(cv2VxTouchCv1Edge[cv1Idx]),
|
|
tolerance);
|
|
if (cv2VxTouchCv1[cv1Idx]) ++numCv2VxesOnCv1;
|
|
}
|
|
}
|
|
|
|
// Handle case where one of the faces are completely covered by the other
|
|
|
|
if (numCv1VxesOnCv2 >= 4)
|
|
{
|
|
int k;
|
|
for (k = 0; k < 4; ++k)
|
|
{
|
|
polygon->push_back(cv1CubeFaceIndices[k]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (numCv2VxesOnCv1 >= 4)
|
|
{
|
|
|
|
int k;
|
|
for (k = 3; k >= 0; --k) // Return opposite winding, to match winding of face 1
|
|
{
|
|
polygon->push_back(cv2CubeFaceIndices[k]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle partial coverage
|
|
// Algorithm outline as follows:
|
|
|
|
// Loop over edges in the face of Cv1. Intersect each one with all the edges of the Cv2 face.
|
|
// Add first point of the cv1 edge to polygon if it really touches Cv2 ( touch of edge is considered as not touching)
|
|
// Add each intersection point along the Cv1 edge if present
|
|
// and finally: if the cv1 edge is going out of cv2, the add the cv2 vertexes from that intersection as long as they touch cv1.
|
|
|
|
int nextCv1Idx = 1;
|
|
for (cv1Idx = 0 ; cv1Idx < 4 ; ++cv1Idx, ++nextCv1Idx)
|
|
{
|
|
if (nextCv1Idx > 3) nextCv1Idx = 0;
|
|
|
|
if (cv1VxTouchCv2[cv1Idx] && cv1VxTouchCv2Edge[cv1Idx] == -1) // Start of cv1 edge is touching inside the cv2 polygon (not on an cv2 edge)
|
|
{
|
|
if (polygon->empty() || polygon->back() != cv1CubeFaceIndices[cv1Idx])
|
|
{
|
|
polygon->push_back(cv1CubeFaceIndices[cv1Idx]);
|
|
}
|
|
|
|
if (cv1VxTouchCv2[nextCv1Idx] && cv1VxTouchCv2Edge[nextCv1Idx] == -1)
|
|
{
|
|
// Both ends of this cv1 edge is touching inside(not on an edge) cv2 polygon, no intersections possible (assuming convex cube-face)
|
|
// Continue with next Cv1-edge.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Find intersection(s) on this edge
|
|
|
|
std::vector<IndexType> intersectionVxIndices;
|
|
std::vector<int> intersectedCv2EdgeIdxs;
|
|
std::vector<double> intersectionFractionsAlongEdge;
|
|
|
|
int nextCv2Idx = 1;
|
|
for (cv2Idx = 0; cv2Idx < 4; ++cv2Idx, ++nextCv2Idx)
|
|
{
|
|
if (nextCv2Idx > 3) nextCv2Idx = 0;
|
|
|
|
// Find a possible real intersection point.
|
|
|
|
cvf::Vec3d intersection(0,0,0);
|
|
double fractionAlongEdge1;
|
|
GeometryTools::IntersectionStatus intersectStatus = GeometryTools::NO_INTERSECTION;
|
|
IndexType intersectionVxIndex = cvf::UNDEFINED_UINT;
|
|
|
|
// First handle some "trivial" ones to ease the burden for the real intersection calculation
|
|
// It could be tested whether it really is necessary to do
|
|
if (cv1VxTouchCv2Edge[cv1Idx] == cv2Idx && cv1VxTouchCv2Edge[nextCv1Idx] == cv2Idx )
|
|
{
|
|
intersectStatus = GeometryTools::LINES_OVERLAP;
|
|
fractionAlongEdge1 = 1;
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
}
|
|
else if (cv1VxTouchCv2Edge[cv1Idx] == cv2Idx )
|
|
{
|
|
// When this happens, the cv1 vertex will already have been added to the polygon
|
|
// by the statements in the top of the cv1 edge loop. Should it be treated specially ?
|
|
intersectStatus = GeometryTools::LINES_TOUCH;
|
|
fractionAlongEdge1 = 0;
|
|
intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
}
|
|
else if (cv1VxTouchCv2Edge[nextCv1Idx] == cv2Idx )
|
|
{
|
|
intersectStatus = GeometryTools::LINES_TOUCH;
|
|
fractionAlongEdge1 = 1;
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
}
|
|
else
|
|
{
|
|
double fractionAlongEdge2;
|
|
bool found = false;
|
|
if (edgeIntersectionStorage)
|
|
found = edgeIntersectionStorage->findIntersection(
|
|
cv1CubeFaceIndices[cv1Idx],
|
|
cv1CubeFaceIndices[nextCv1Idx],
|
|
cv2CubeFaceIndices[cv2Idx],
|
|
cv2CubeFaceIndices[nextCv2Idx],
|
|
&intersectionVxIndex, &intersectStatus,
|
|
&fractionAlongEdge1, &fractionAlongEdge2);
|
|
|
|
if (!found)
|
|
{
|
|
|
|
intersectStatus = GeometryTools::inPlaneLineIntersect3D(normal,
|
|
nodes[cv1CubeFaceIndices[cv1Idx]],
|
|
nodes[cv1CubeFaceIndices[nextCv1Idx]],
|
|
nodes[cv2CubeFaceIndices[cv2Idx]],
|
|
nodes[cv2CubeFaceIndices[nextCv2Idx]],
|
|
&intersection, &fractionAlongEdge1, &fractionAlongEdge2,
|
|
tolerance);
|
|
|
|
switch (intersectStatus)
|
|
{
|
|
case GeometryTools::LINES_CROSSES:
|
|
{
|
|
intersectionVxIndex = newVertexIndex;
|
|
createdVertexes->push_back(intersection);
|
|
++newVertexIndex;
|
|
}
|
|
break;
|
|
case GeometryTools::LINES_TOUCH:
|
|
{
|
|
if (fractionAlongEdge1 <= 0.0) intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
else if (fractionAlongEdge1 >= 1.0) intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
else if (fractionAlongEdge2 <= 0.0) intersectionVxIndex = cv2CubeFaceIndices[cv2Idx];
|
|
else if (fractionAlongEdge2 >= 1.0) intersectionVxIndex = cv2CubeFaceIndices[nextCv2Idx];
|
|
else CVF_ASSERT(false); // Tolerance trouble
|
|
}
|
|
break;
|
|
case GeometryTools::LINES_OVERLAP:
|
|
{
|
|
if (fractionAlongEdge1 <= 0.0) intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
else if (fractionAlongEdge1 >= 1.0) intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
else if (fractionAlongEdge2 <= 0.0) intersectionVxIndex = cv2CubeFaceIndices[cv2Idx];
|
|
else if (fractionAlongEdge2 >= 1.0) intersectionVxIndex = cv2CubeFaceIndices[nextCv2Idx];
|
|
else CVF_ASSERT(false); // Tolerance trouble
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if(edgeIntersectionStorage)
|
|
edgeIntersectionStorage->addIntersection( cv1CubeFaceIndices[cv1Idx],
|
|
cv1CubeFaceIndices[nextCv1Idx],
|
|
cv2CubeFaceIndices[cv2Idx],
|
|
cv2CubeFaceIndices[nextCv2Idx],
|
|
intersectionVxIndex, intersectStatus,
|
|
fractionAlongEdge1, fractionAlongEdge2);
|
|
|
|
}
|
|
}
|
|
|
|
// Store data for each intersection along the Cv1-edge
|
|
|
|
if ( (intersectStatus == GeometryTools::LINES_CROSSES)
|
|
|| (intersectStatus == GeometryTools::LINES_TOUCH)
|
|
|| (intersectStatus == GeometryTools::LINES_OVERLAP) )
|
|
{
|
|
CVF_ASSERT(intersectionVxIndex != cvf::UNDEFINED_UINT);
|
|
|
|
intersectionFractionsAlongEdge.push_back(fractionAlongEdge1);
|
|
intersectedCv2EdgeIdxs.push_back(cv2Idx);
|
|
intersectionVxIndices.push_back(intersectionVxIndex);
|
|
}
|
|
}
|
|
|
|
// Insert the intersections into the polygon in the correct order along the Cv1 edge.
|
|
// Find the last intersection in order to possibly continue the polygon along Cv2 into Cv1
|
|
|
|
size_t i;
|
|
size_t lastIntersection = std::numeric_limits<size_t>::max();
|
|
double largestFraction = -1;
|
|
for (i = 0; i < intersectionFractionsAlongEdge.size(); ++i)
|
|
{
|
|
if (intersectionFractionsAlongEdge[i] > largestFraction)
|
|
{
|
|
lastIntersection = i;
|
|
largestFraction = intersectionFractionsAlongEdge[i];
|
|
}
|
|
}
|
|
|
|
// Insert indices to the new intersection vertices into the polygon of
|
|
// this connection according to fraction along edge
|
|
|
|
std::map<double,IndexType> sortingMap;
|
|
for (i = 0; i < intersectionFractionsAlongEdge.size(); ++i)
|
|
{
|
|
sortingMap[intersectionFractionsAlongEdge[i]] = intersectionVxIndices[i];
|
|
}
|
|
|
|
typename std::map<double, IndexType>::iterator it;
|
|
for (it = sortingMap.begin(); it != sortingMap.end(); ++it)
|
|
{
|
|
if (polygon->empty() || polygon->back() != it->second)
|
|
{
|
|
polygon->push_back(it->second);
|
|
}
|
|
}
|
|
|
|
// Then if the Cv1 edge is going out of Cv2, add to the polygon, all the Cv2 face vertex-indices
|
|
// from the intersection that touches Cv1.
|
|
|
|
// if cv1 edge in any way touches cv2 and ends up outside, it went out.
|
|
|
|
/*
|
|
if cv1 edge is going out of cv2 then
|
|
if intersected cv2 edge has endpoint touching cv1 then
|
|
add endpoint to polygon. continue to add next endpoint until it does not touch Cv1
|
|
*/
|
|
if ( !cv1VxTouchCv2[nextCv1Idx]
|
|
&& ( cv1VxTouchCv2[cv1Idx] || ( intersectedCv2EdgeIdxs.size() ) ) ) // Two touches along edge also qualifies
|
|
{
|
|
if(lastIntersection < intersectedCv2EdgeIdxs.size())
|
|
{
|
|
cv2Idx = intersectedCv2EdgeIdxs[lastIntersection];
|
|
int count = 0;
|
|
// Continue the polygon along the Cv2 edges as long as they touch cv1.
|
|
// Depending on the faces having opposite winding, which is guaranteed as long as
|
|
// no intersecting CVs share a connection
|
|
while (cv2VxTouchCv1[cv2Idx] && count < 4 && (cv2VxTouchCv1Edge[cv2Idx] == -1)) // Touch of edge is regarded as being outside, so we must stop
|
|
{
|
|
if (polygon->empty() || polygon->back() != cv2CubeFaceIndices[cv2Idx])
|
|
{
|
|
polygon->push_back(cv2CubeFaceIndices[cv2Idx]);
|
|
}
|
|
--cv2Idx;
|
|
if (cv2Idx < 0 ) cv2Idx = 3;
|
|
++count;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CVF_ASSERT(lastIntersection < intersectedCv2EdgeIdxs.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (polygon->size() > 2)
|
|
{
|
|
if (polygon->back() == polygon->front()) polygon->pop_back();
|
|
}
|
|
|
|
// Sanity checks
|
|
if (polygon->size() < 3)
|
|
{
|
|
// cvf::Trace::show(cvf::String("Degenerated connection polygon detected. (Less than 3 vertexes) Cv's probably not in contact: %1 , %2").arg(m_ownerCvId).arg(m_neighborCvId));
|
|
polygon->clear();
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// This method assumes that all intersection and mid edge vertexes are created an are already
|
|
/// merged into all the polygons. We can also assume that all the connection polygons are completely
|
|
/// inside (or sharing edges with) the cube face polygon initially
|
|
//--------------------------------------------------------------------------------------------------
|
|
#define DEBUG_PRINT 0
|
|
|
|
//template <typename NodeArrayType, typename NodeType, typename IndicesArrayType, typename IndicesType>
|
|
//void setup( ArrayWrapper<NodeArrayType, NodeType> nodeArray, ArrayWrapper<IndicesArrayType, IndicesType> indices)
|
|
template<typename VerticeArrayType, typename PolygonArrayType, typename IndexType>
|
|
void GeometryTools::calculatePartiallyFreeCubeFacePolygon(ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodeCoords,
|
|
ArrayWrapperConst<PolygonArrayType, IndexType> completeFacePolygon,
|
|
const cvf::Vec3d& faceNormal,
|
|
const std::vector< std::vector<IndexType>* >& faceOverlapPolygons,
|
|
const std::vector<bool>& faceOverlapPolygonWindingSameAsCubeFaceFlags,
|
|
std::vector<IndexType>* partialFacePolygon,
|
|
bool* m_partiallyFreeCubeFaceHasHoles)
|
|
{
|
|
// Vertex Index to position in polygon
|
|
typedef std::map< IndexType, typename std::vector<IndexType>::const_iterator > VxIdxToPolygonPositionMap;
|
|
|
|
CVF_ASSERT(m_partiallyFreeCubeFaceHasHoles);
|
|
CVF_ASSERT(partialFacePolygon != NULL);
|
|
|
|
// Copy the start polygon
|
|
std::list<IndexType> resultPolygon;
|
|
for (size_t pcIdx = 0; pcIdx < completeFacePolygon.size(); ++pcIdx)
|
|
{
|
|
resultPolygon.push_back(completeFacePolygon[pcIdx]);
|
|
}
|
|
|
|
// First build search maps to fast find whether and where an index is positioned in a polygon
|
|
// Map from Vertex-index to position in polygon
|
|
|
|
std::vector< VxIdxToPolygonPositionMap > polygonSearchMaps;
|
|
std::vector<bool> isConnectionPolygonMerged;
|
|
|
|
polygonSearchMaps.resize(faceOverlapPolygons.size());
|
|
isConnectionPolygonMerged.resize(faceOverlapPolygons.size(), false);
|
|
|
|
// Build search maps
|
|
{
|
|
size_t count;
|
|
for (size_t i = 0; i < faceOverlapPolygons.size(); ++i)
|
|
{
|
|
count = 0;
|
|
for (typename std::vector<IndexType >::const_iterator pcIt = faceOverlapPolygons[i]->begin();
|
|
pcIt != faceOverlapPolygons[i]->end();
|
|
++pcIt)
|
|
{
|
|
polygonSearchMaps[i][*pcIt] = pcIt;
|
|
++count;
|
|
}
|
|
|
|
if (count < 3) isConnectionPolygonMerged[i] = true; // Ignore false polygons
|
|
}
|
|
}
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show("Circumference polygon: ");
|
|
std::list<IndexType>::const_iterator polIt;
|
|
for ( polIt = resultPolygon.begin(); polIt != resultPolygon.end(); ++polIt)
|
|
{
|
|
cvf::Trace::show(cvf::String("%1 \t%2 %3 %4").arg((int)(*polIt))
|
|
.arg(nodeCoords[*polIt].x())
|
|
.arg(nodeCoords[*polIt].y())
|
|
.arg(nodeCoords[*polIt].z()));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show("Connection polygons: ");
|
|
for (size_t cIdx = 0; cIdx < faceOverlapPolygons.size(); cIdx++)
|
|
{
|
|
std::vector<IndexType >::const_iterator polIt;
|
|
cvf::Trace::show("Connection " + cvf::String((long long)cIdx));
|
|
for (polIt = faceOverlapPolygons[cIdx]->begin(); polIt != faceOverlapPolygons[cIdx]->end(); ++polIt)
|
|
{
|
|
cvf::Trace::show(cvf::String("%1 \t%2 %3 %4").arg((int)(*polIt))
|
|
.arg(nodeCoords[*polIt].x())
|
|
.arg(nodeCoords[*polIt].y())
|
|
.arg(nodeCoords[*polIt].z()));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Merge connection polygons with the main polygon as long as one of them has something in common.
|
|
|
|
// For each vx in the m_freeFacePolygons[cubeFace] polygon .
|
|
// loop over all connections
|
|
// if it has the node in common and that the edge angle will decrease if inserting
|
|
// merge the connection polygon into the main polygon,
|
|
// and remove the connection polygon from the merge able connection polygons.
|
|
|
|
|
|
for (typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt)
|
|
{
|
|
// Set iterator to previous node in polygon
|
|
typename std::list<IndexType>::iterator prevPIt = pIt;
|
|
if (prevPIt == resultPolygon.begin()) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
|
|
cvf::Vec3d pToPrev = nodeCoords[*prevPIt] - nodeCoords[*pIt];
|
|
|
|
// Set iterator to next node in polygon. Used to insert before and as pointer to the next point
|
|
typename std::list<IndexType>::iterator nextPIt = pIt;
|
|
++nextPIt;
|
|
typename std::list<IndexType>::iterator insertBeforePIt = nextPIt;
|
|
if (nextPIt == resultPolygon.end()) nextPIt = resultPolygon.begin();
|
|
|
|
// Calculate existing edge to edge angle
|
|
|
|
cvf::Vec3d pToNext = nodeCoords[*nextPIt] - nodeCoords[*pIt];
|
|
double mainPolygonEdgeAngle = GeometryTools::getAngle(faceNormal, pToNext , pToPrev);
|
|
|
|
// Find connections containing the pIt vertex index. Merge them into the main polygon
|
|
|
|
for (size_t opIdx = 0; opIdx < faceOverlapPolygons.size(); ++opIdx)
|
|
{
|
|
if (isConnectionPolygonMerged[opIdx]) continue; // Already merged
|
|
|
|
// Find position of pIt vertex index in the current connection polygon
|
|
typename VxIdxToPolygonPositionMap::iterator vxIndexPositionInPolygonIt = polygonSearchMaps[opIdx].find(*pIt);
|
|
|
|
if (vxIndexPositionInPolygonIt != polygonSearchMaps[opIdx].end())
|
|
{
|
|
// Merge the connection polygon into the main polygon
|
|
// if the angle prevPIt pIt nextPIt is larger than angle prevPIt pIt (startCPIt++)
|
|
|
|
typename std::vector<IndexType>::const_iterator startCPIt;
|
|
startCPIt = vxIndexPositionInPolygonIt->second;
|
|
|
|
// First vx to insert is the one after the match
|
|
|
|
bool hasSameWinding = faceOverlapPolygonWindingSameAsCubeFaceFlags[opIdx];
|
|
if (hasSameWinding)
|
|
{
|
|
// Same winding as main polygon. We need to go the opposite way
|
|
if (startCPIt == faceOverlapPolygons[opIdx]->begin()) startCPIt = faceOverlapPolygons[opIdx]->end();
|
|
--startCPIt;
|
|
}
|
|
else
|
|
{
|
|
// Opposite winding. Go forward when merging
|
|
++startCPIt; if (startCPIt == faceOverlapPolygons[opIdx]->end()) startCPIt = faceOverlapPolygons[opIdx]->begin();
|
|
}
|
|
|
|
// Calculate possible new edge-to-edge angle and test against existing angle
|
|
cvf::Vec3d pToStart = nodeCoords[*startCPIt] - nodeCoords[*pIt];
|
|
double candidatePolygonEdgeAngle = GeometryTools::getAngle(faceNormal, pToStart , pToPrev);
|
|
|
|
if (candidatePolygonEdgeAngle < mainPolygonEdgeAngle )
|
|
{
|
|
// Merge ok
|
|
typename std::vector<IndexType >::const_iterator pcIt = startCPIt;
|
|
if (hasSameWinding)
|
|
{
|
|
do
|
|
{
|
|
resultPolygon.insert(insertBeforePIt, (*pcIt));
|
|
|
|
if (pcIt == faceOverlapPolygons[opIdx]->begin()) pcIt = faceOverlapPolygons[opIdx]->end();
|
|
--pcIt;
|
|
|
|
} while (pcIt != startCPIt);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
resultPolygon.insert(insertBeforePIt, (*pcIt));
|
|
|
|
++pcIt;
|
|
if (pcIt == faceOverlapPolygons[opIdx]->end()) pcIt = faceOverlapPolygons[opIdx]->begin();
|
|
|
|
} while (pcIt != startCPIt);
|
|
}
|
|
|
|
isConnectionPolygonMerged[opIdx] = true;
|
|
|
|
// Recalculate the next position to point into the new nodes
|
|
// Set iterator in the main polygon to insert before and to the next point
|
|
nextPIt = pIt;
|
|
++nextPIt;
|
|
insertBeforePIt = nextPIt;
|
|
if (nextPIt == resultPolygon.end()) nextPIt = resultPolygon.begin();
|
|
|
|
// Recalculate the existing edge to edge angle
|
|
pToNext = nodeCoords[*nextPIt] - nodeCoords[*pIt];
|
|
mainPolygonEdgeAngle = GeometryTools::getAngle(faceNormal, pToNext , pToPrev);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now remove all double edges
|
|
|
|
bool goneAround = false;
|
|
for ( typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end() && !goneAround; ++pIt)
|
|
{
|
|
// Set iterator to next node in polygon.
|
|
typename std::list<IndexType>::iterator nextPIt = pIt;
|
|
++nextPIt;
|
|
if (nextPIt == resultPolygon.end())
|
|
{
|
|
nextPIt = resultPolygon.begin();
|
|
goneAround = true; // Gone around polygon. Stop even if pIt is jumping over end()
|
|
}
|
|
|
|
// Set iterator to previous node in polygon
|
|
|
|
typename std::list<IndexType>::iterator prevPIt = pIt;
|
|
|
|
if (prevPIt == resultPolygon.begin()) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
|
|
// If previous and next node are the same, erase
|
|
while(*nextPIt == *prevPIt)
|
|
{
|
|
resultPolygon.erase(pIt);
|
|
resultPolygon.erase(prevPIt);
|
|
|
|
if ( resultPolygon.begin() == resultPolygon.end()) break; // Polygon has been completely removed. Nothing left. Break out of while
|
|
|
|
pIt = nextPIt;
|
|
++nextPIt;
|
|
if (nextPIt == resultPolygon.end())
|
|
{
|
|
nextPIt = resultPolygon.begin();
|
|
goneAround = true; // Gone around polygon pIt is jumping over end()
|
|
}
|
|
|
|
prevPIt = pIt;
|
|
if (prevPIt == resultPolygon.begin()) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
}
|
|
|
|
if ( resultPolygon.begin() == resultPolygon.end()) break; // Polygon has been completely removed. Nothing left. Break out of for loop
|
|
|
|
}
|
|
|
|
// Check for holes
|
|
|
|
bool hasHoles = false;
|
|
for (size_t i = 0; i < isConnectionPolygonMerged.size(); ++i)
|
|
{
|
|
hasHoles = !isConnectionPolygonMerged[i];
|
|
if(hasHoles)
|
|
{
|
|
*m_partiallyFreeCubeFaceHasHoles = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show("Polygon: ");
|
|
for (std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt)
|
|
{
|
|
cvf::Trace::show(cvf::String("%1 \t%2 %3 %4").arg((int)(*pIt))
|
|
.arg(nodeCoords[*pIt].x())
|
|
.arg(nodeCoords[*pIt].y())
|
|
.arg(nodeCoords[*pIt].z()));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Copy the result polygon to the output variable
|
|
|
|
partialFacePolygon->clear();
|
|
for (typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt)
|
|
{
|
|
partialFacePolygon->push_back(*pIt);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::setVertexCount(size_t size)
|
|
{
|
|
m_edgeIntsectMap.resize(size);
|
|
}
|
|
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::canonizeAddress(IndexType& e1P1, IndexType& e1P2, IndexType& e2P1, IndexType& e2P2,
|
|
bool& flipE1, bool& flipE2, bool& flipE1E2)
|
|
{
|
|
flipE1 = e1P1 > e1P2;
|
|
flipE2 = e2P1 > e2P2;
|
|
|
|
flipE1E2 = (flipE1 ? e1P2: e1P1) > (flipE2 ? e2P2: e2P1);
|
|
|
|
static IndexType temp;
|
|
if (flipE1)
|
|
{
|
|
temp = e1P1;
|
|
e1P1 = e1P2;
|
|
e1P2 = temp;
|
|
}
|
|
|
|
if (flipE2)
|
|
{
|
|
temp = e2P1;
|
|
e2P1 = e2P2;
|
|
e2P2 = temp;
|
|
}
|
|
|
|
if (flipE1E2)
|
|
{
|
|
temp = e1P1;
|
|
e1P1 = e2P1;
|
|
e2P1 = temp;
|
|
|
|
temp = e1P2;
|
|
e1P2 = e2P2;
|
|
e2P2 = temp;
|
|
}
|
|
}
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::addIntersection(IndexType e1P1, IndexType e1P2, IndexType e2P1, IndexType e2P2,
|
|
IndexType vxIndexIntersectionPoint, GeometryTools::IntersectionStatus intersectionStatus,
|
|
double fractionAlongEdge1, double fractionAlongEdge2)
|
|
{
|
|
static bool flipE1 ;
|
|
static bool flipE2 ;
|
|
static bool flipE1E2;
|
|
|
|
canonizeAddress(e1P1, e1P2, e2P1, e2P2, flipE1, flipE2, flipE1E2);
|
|
|
|
static IntersectData iData;
|
|
|
|
iData.fractionAlongEdge1 = flipE1 ? 1 - fractionAlongEdge1 : fractionAlongEdge1;
|
|
iData.fractionAlongEdge2 = flipE2 ? 1 - fractionAlongEdge2 : fractionAlongEdge2;
|
|
iData.intersectionStatus = intersectionStatus;
|
|
|
|
if (flipE1E2)
|
|
{
|
|
double temp = iData.fractionAlongEdge1;
|
|
iData.fractionAlongEdge1 = iData.fractionAlongEdge2;
|
|
iData.fractionAlongEdge2 = temp;
|
|
}
|
|
|
|
iData.intersectionPointIndex = vxIndexIntersectionPoint;
|
|
CVF_ASSERT(e1P1 < m_edgeIntsectMap.size());
|
|
m_edgeIntsectMap[e1P1][e1P2][e2P1][e2P2] = iData;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
bool EdgeIntersectStorage<IndexType>::findIntersection(IndexType e1P1, IndexType e1P2, IndexType e2P1, IndexType e2P2,
|
|
IndexType* vxIndexIntersectionPoint, GeometryTools::IntersectionStatus* intersectionStatus,
|
|
double* fractionAlongEdge1, double* fractionAlongEdge2)
|
|
{
|
|
static bool flipE1 ;
|
|
static bool flipE2 ;
|
|
static bool flipE1E2;
|
|
|
|
canonizeAddress(e1P1, e1P2, e2P1, e2P2, flipE1, flipE2, flipE1E2);
|
|
|
|
if (!m_edgeIntsectMap[e1P1].size()) return false;
|
|
|
|
typename std::map<IndexType, std::map<IndexType, std::map<IndexType, IntersectData > > >::iterator it;
|
|
it = m_edgeIntsectMap[e1P1].find(e1P2);
|
|
if (it == m_edgeIntsectMap[e1P1].end()) return false;
|
|
|
|
typename std::map<IndexType, std::map<IndexType, IntersectData > >::iterator it2;
|
|
it2 = it->second.find(e2P1);
|
|
if (it2 == it->second.end()) return false;
|
|
|
|
typename std::map<IndexType, IntersectData >::iterator it3;
|
|
it3 = it2->second.find(e2P2);
|
|
if (it3 == it2->second.end()) return false;
|
|
|
|
*vxIndexIntersectionPoint = it3->second.intersectionPointIndex;
|
|
*intersectionStatus = it3->second.intersectionStatus;
|
|
|
|
if (flipE1E2)
|
|
{
|
|
*fractionAlongEdge1 = it3->second.fractionAlongEdge2;
|
|
*fractionAlongEdge2 = it3->second.fractionAlongEdge1;
|
|
}
|
|
else
|
|
{
|
|
*fractionAlongEdge1 = it3->second.fractionAlongEdge1;
|
|
*fractionAlongEdge2 = it3->second.fractionAlongEdge2;
|
|
}
|
|
|
|
if (flipE1) *fractionAlongEdge1 = 1 - *fractionAlongEdge1;
|
|
if (flipE2) *fractionAlongEdge2 = 1 - *fractionAlongEdge2;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
}
|