ResInsight/ApplicationCode/ReservoirDataModel/RigFlowDiagSolverInterface.cpp

293 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2016- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFlowDiagSolverInterface.h"
#include "RifEclipseOutputFileTools.h"
#include "RifReaderInterface.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigFlowDiagInterfaceTools.h"
#include "RimEclipseCase.h"
#include "RimEclipseResultCase.h"
#include "RimFlowDiagSolution.h"
#include <QMessageBox>
#include "cafProgressInfo.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagTimeStepResult::RigFlowDiagTimeStepResult(size_t activeCellCount)
: m_activeCellCount(activeCellCount)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagTimeStepResult::setTracerTOF(const std::string& tracerName, const std::map<int, double>& cellValues)
{
std::set<std::string> tracers;
tracers.insert(tracerName);
RigFlowDiagResultAddress resAddr(RIG_FLD_TOF_RESNAME, tracers);
this->addResult(resAddr, cellValues);
std::vector<double>& activeCellValues = m_nativeResults[resAddr];
for (double & val: activeCellValues)
{
val = val * 1.15741e-5; // days pr second. Converting to days
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagTimeStepResult::setTracerFraction(const std::string& tracerName, const std::map<int, double>& cellValues)
{
std::set<std::string> tracers;
tracers.insert(tracerName);
this->addResult(RigFlowDiagResultAddress(RIG_FLD_CELL_FRACTION_RESNAME, tracers), cellValues);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagTimeStepResult::addResult(const RigFlowDiagResultAddress& resAddr, const std::map<int, double>& cellValues)
{
std::vector<double>& activeCellValues = m_nativeResults[resAddr];
activeCellValues.resize(m_activeCellCount, HUGE_VAL);
for (const auto& pairIt : cellValues)
{
activeCellValues[pairIt.first] = pairIt.second;
}
}
class RigOpmFldStaticData : public cvf::Object
{
public:
RigOpmFldStaticData(const std::string& grid, const std::string& init) : eclGraph(Opm::ECLGraph::load(grid, init)), m_hasUnifiedRestartFile(false) {}
Opm::ECLGraph eclGraph;
std::unique_ptr<Opm::FlowDiagnostics::Toolbox> fldToolbox;
bool m_hasUnifiedRestartFile;
QStringList restartFileNames;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagSolverInterface::RigFlowDiagSolverInterface(RimEclipseResultCase * eclipseCase)
: m_eclipseCase(eclipseCase)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagSolverInterface::~RigFlowDiagSolverInterface()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagTimeStepResult RigFlowDiagSolverInterface::calculate(size_t timeStepIndex,
std::map<std::string, std::vector<int> > injectorTracers,
std::map<std::string, std::vector<int> > producerTracers)
{
using namespace Opm::FlowDiagnostics;
RigFlowDiagTimeStepResult result(m_eclipseCase->reservoirData()->activeCellInfo(RifReaderInterface::MATRIX_RESULTS)->reservoirActiveCellCount());
caf::ProgressInfo progressInfo(7, "Calculating Flow Diagnostics");
if ( m_opmFldData.isNull() )
{
progressInfo.setProgressDescription("Grid access");
// Get set of files
QString gridFileName = m_eclipseCase->gridFileName();
QStringList m_filesWithSameBaseName;
if ( !RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName(gridFileName, &m_filesWithSameBaseName) ) return result;
QString initFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_INIT_FILE);
m_opmFldData = new RigOpmFldStaticData(gridFileName.toStdString(),
initFileName.toStdString());
progressInfo.incrementProgress();
progressInfo.setProgressDescription("Calculating Connectivities");
const Opm::FlowDiagnostics::ConnectivityGraph connGraph =
Opm::FlowDiagnostics::ConnectivityGraph{ static_cast<int>(m_opmFldData->eclGraph.numCells()),
m_opmFldData->eclGraph.neighbours() };
progressInfo.incrementProgress();
progressInfo.setProgressDescription("Initialize Solver");
// Create the Toolbox.
m_opmFldData->fldToolbox.reset(new Opm::FlowDiagnostics::Toolbox{ connGraph });
m_opmFldData->fldToolbox->assignPoreVolume( m_opmFldData->eclGraph.poreVolume());
// Look for unified restart file
QString restartFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_UNIFIED_RESTART_FILE);
if ( !restartFileName.isEmpty() )
{
m_opmFldData->eclGraph.assignFluxDataSource(restartFileName.toStdString());
m_opmFldData->m_hasUnifiedRestartFile = true;
}
else
{
m_opmFldData->restartFileNames = RifEclipseOutputFileTools::filterFileNamesOfType(m_filesWithSameBaseName, ECL_RESTART_FILE);
size_t restartFileCount = static_cast<size_t>(m_opmFldData->restartFileNames.size());
size_t maxTimeStepCount = m_eclipseCase->reservoirData()->results(RifReaderInterface::MATRIX_RESULTS)->maxTimeStepCount();
if (restartFileCount <= timeStepIndex && restartFileCount != maxTimeStepCount )
{
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: Could not find all the restart files. Results will not be loaded.");
return result;
}
m_opmFldData->restartFileNames.sort(); // To make sure they are sorted in increasing *.X000N order. Hack. Should probably be actual time stored on file.
m_opmFldData->m_hasUnifiedRestartFile = false;
}
}
progressInfo.setProgress(3);
progressInfo.setProgressDescription("Assigning Flux Field");
if ( ! m_opmFldData->m_hasUnifiedRestartFile )
{
QString restartFileName = m_opmFldData->restartFileNames[static_cast<int>(timeStepIndex)];
m_opmFldData->eclGraph.assignFluxDataSource(restartFileName.toStdString());
}
size_t resultIndexWithMaxTimeSteps = cvf::UNDEFINED_SIZE_T;
m_eclipseCase->reservoirData()->results(RifReaderInterface::MATRIX_RESULTS)->maxTimeStepCount(&resultIndexWithMaxTimeSteps);
int reportStepNumber = m_eclipseCase->reservoirData()->results(RifReaderInterface::MATRIX_RESULTS)->reportStepNumber(resultIndexWithMaxTimeSteps, timeStepIndex);
if ( ! m_opmFldData->eclGraph.selectReportStep(reportStepNumber) )
{
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: Could not find the requested timestep in the result file. Results will not be loaded.");
return result;
}
// Set up flow Toolbox with timestep data
{
Opm::FlowDiagnostics::ConnectionValues connectionsVals = RigFlowDiagInterfaceTools::extractFluxField(m_opmFldData->eclGraph, false);
m_opmFldData->fldToolbox->assignConnectionFlux(connectionsVals);
progressInfo.incrementProgress();
Opm::ECLWellSolution wsol = Opm::ECLWellSolution{-1.0 , false};
const std::vector<Opm::ECLWellSolution::WellData> well_fluxes =
wsol.solution(m_opmFldData->eclGraph.rawResultData(), m_opmFldData->eclGraph.numGrids());
m_opmFldData->fldToolbox->assignInflowFlux(RigFlowDiagInterfaceTools::extractWellFlows(m_opmFldData->eclGraph, well_fluxes));
}
progressInfo.incrementProgress();
progressInfo.setProgressDescription("Injector Solution");
// Injection Solution
{
std::vector<CellSet> injectorCellSet;
for ( const auto& tIt: injectorTracers )
{
injectorCellSet.push_back(CellSet(CellSetID(tIt.first), tIt.second));
}
try
{
Solution injSol = m_opmFldData->fldToolbox->computeInjectionDiagnostics(injectorCellSet).fd;
for ( const CellSetID& tracerId: injSol.startPoints() )
{
CellSetValues tofVals = injSol.timeOfFlight(tracerId);
result.setTracerTOF(tracerId.to_string(), tofVals);
CellSetValues fracVals = injSol.concentration(tracerId);
result.setTracerFraction(tracerId.to_string(), fracVals);
}
}
catch (...)
{
CVF_ASSERT(false);
}
}
progressInfo.incrementProgress();
progressInfo.setProgressDescription("Producer Solution");
// Producer Solution
{
std::vector<CellSet> prodjCellSet;
for ( const auto& tIt: producerTracers )
{
prodjCellSet.push_back(CellSet(CellSetID(tIt.first), tIt.second));
}
try
{
Solution prodSol = m_opmFldData->fldToolbox->computeProductionDiagnostics(prodjCellSet).fd;
for ( const CellSetID& tracerId: prodSol.startPoints() )
{
CellSetValues tofVals = prodSol.timeOfFlight(tracerId);
result.setTracerTOF(tracerId.to_string(), tofVals);
CellSetValues fracVals = prodSol.concentration(tracerId);
result.setTracerFraction(tracerId.to_string(), fracVals);
}
}
catch (...)
{
CVF_ASSERT(false);
}
}
return result; // Relying on implicit move constructor
}