Files
ResInsight/Fwk/AppFwk/CommonCode/cvfStructGrid.cpp
Magne Sjaastad ac9b9b2699 Fix regression test issues
* Fix eternal loop causing the application to hang
* Revert changes related to file well path introduced in 70bb22
* Use some iterations to find representative cells for computation of cell sizes
2023-02-16 20:05:12 +01:00

454 lines
16 KiB
C++

//##################################################################################################
//
// Custom Visualization Core library
// Copyright (C) 2011-2013 Ceetron AS
//
// This library may be used under the terms of either the GNU General Public License or
// the GNU Lesser General Public License as follows:
//
// GNU General Public License Usage
// This library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <<http://www.gnu.org/licenses/gpl.html>>
// for more details.
//
// GNU Lesser General Public License Usage
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU Lesser General Public License at <<http://www.gnu.org/licenses/lgpl-2.1.html>>
// for more details.
//
//##################################################################################################
#include "cvfStructGrid.h"
#include "cvfBase.h"
#include "cvfBoundingBox.h"
#include <algorithm>
namespace caf
{
template <>
void cvf::StructGridInterface::FaceEnum::setUp()
{
addItem( cvf::StructGridInterface::POS_I, "POS I", "" );
addItem( cvf::StructGridInterface::NEG_I, "NEG I", "" );
addItem( cvf::StructGridInterface::POS_J, "POS J", "" );
addItem( cvf::StructGridInterface::NEG_J, "NEG J", "" );
addItem( cvf::StructGridInterface::POS_K, "POS K", "" );
addItem( cvf::StructGridInterface::NEG_K, "NEG K", "" );
addItem( cvf::StructGridInterface::NO_FACE, "UnDef", "" );
}
} // namespace caf
namespace cvf
{
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
StructGridInterface::StructGridInterface()
{
m_characteristicCellSizeI = cvf::UNDEFINED_DOUBLE;
m_characteristicCellSizeJ = cvf::UNDEFINED_DOUBLE;
m_characteristicCellSizeK = cvf::UNDEFINED_DOUBLE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t StructGridInterface::cellCountI() const
{
if ( gridPointCountI() == 0 ) return 0;
return gridPointCountI() - 1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t StructGridInterface::cellCountJ() const
{
if ( gridPointCountJ() == 0 ) return 0;
return gridPointCountJ() - 1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t StructGridInterface::cellCountK() const
{
if ( gridPointCountK() == 0 ) return 0;
return gridPointCountK() - 1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void StructGridInterface::cellFaceVertexIndices( FaceType face, cvf::ubyte vertexIndices[4] )
{
//
// 7---------6
// /| /| |k
// / | / | | /j
// 4---------5 | |/
// | 3------|--2 *---i
// | / | /
// |/ |/
// 0---------1
if ( face == NEG_K )
{
vertexIndices[0] = 0;
vertexIndices[1] = 3;
vertexIndices[2] = 2;
vertexIndices[3] = 1;
}
else if ( face == POS_K )
{
vertexIndices[0] = 4;
vertexIndices[1] = 5;
vertexIndices[2] = 6;
vertexIndices[3] = 7;
}
else if ( face == NEG_J )
{
vertexIndices[0] = 0;
vertexIndices[1] = 1;
vertexIndices[2] = 5;
vertexIndices[3] = 4;
}
else if ( face == POS_I )
{
vertexIndices[0] = 1;
vertexIndices[1] = 2;
vertexIndices[2] = 6;
vertexIndices[3] = 5;
}
else if ( face == POS_J )
{
vertexIndices[0] = 3;
vertexIndices[1] = 7;
vertexIndices[2] = 6;
vertexIndices[3] = 2;
}
else if ( face == NEG_I )
{
vertexIndices[0] = 0;
vertexIndices[1] = 4;
vertexIndices[2] = 7;
vertexIndices[3] = 3;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<ubyte, ubyte> StructGridInterface::edgeVertexIndices( FaceType face1, FaceType face2 )
{
// Return the two shared vertex indices between two faces
// The ordering is identical to the ordering in StructGridInterface::cellFaceVertexIndices
// Ensure face1 has the largest enum value
if ( face2 > face1 ) std::swap( face1, face2 );
if ( face1 == NEG_K )
{
if ( face2 == NEG_I ) return { 0, 3 };
if ( face2 == POS_I ) return { 2, 1 };
if ( face2 == NEG_J ) return { 1, 0 };
if ( face2 == POS_J ) return { 3, 2 };
}
if ( face1 == POS_K )
{
if ( face2 == NEG_I ) return { 7, 4 };
if ( face2 == POS_I ) return { 5, 6 };
if ( face2 == NEG_J ) return { 4, 5 };
if ( face2 == POS_J ) return { 6, 7 };
}
if ( face1 == NEG_J )
{
if ( face2 == NEG_I ) return { 4, 0 };
if ( face2 == POS_I ) return { 1, 5 };
}
if ( face1 == POS_J )
{
if ( face2 == NEG_I ) return { 3, 7 };
if ( face2 == POS_I ) return { 6, 2 };
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
StructGridInterface::FaceType StructGridInterface::oppositeFace( FaceType face )
{
FaceType opposite;
switch ( face )
{
case NEG_I:
opposite = POS_I;
break;
case POS_I:
opposite = NEG_I;
break;
case NEG_J:
opposite = POS_J;
break;
case POS_J:
opposite = NEG_J;
break;
case NEG_K:
opposite = POS_K;
break;
case POS_K:
opposite = NEG_K;
break;
default:
opposite = POS_I;
CVF_ASSERT( false );
}
return opposite;
}
//--------------------------------------------------------------------------------------------------
/// Return values are set to cvf::UNDEFINED_SIZE_T if the neighbor is in the negative area
//--------------------------------------------------------------------------------------------------
void StructGridInterface::neighborIJKAtCellFace( size_t i, size_t j, size_t k, FaceType face, size_t* ni, size_t* nj, size_t* nk )
{
*ni = i;
*nj = j;
*nk = k;
switch ( face )
{
case POS_I:
( *ni )++;
break;
case NEG_I:
if ( i > 0 )
( *ni )--;
else
( *ni ) = cvf::UNDEFINED_SIZE_T;
break;
case POS_J:
( *nj )++;
break;
case NEG_J:
if ( j > 0 )
( *nj )--;
else
( *nj ) = cvf::UNDEFINED_SIZE_T;
break;
case POS_K:
( *nk )++;
break;
case NEG_K:
if ( k > 0 )
( *nk )--;
else
( *nk ) = cvf::UNDEFINED_SIZE_T;
break;
default:
break;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
StructGridInterface::GridAxisType StructGridInterface::gridAxisFromFace( FaceType face )
{
GridAxisType axis = GridAxisType::NO_AXIS;
if ( face == cvf::StructGridInterface::POS_I || face == cvf::StructGridInterface::NEG_I )
{
axis = GridAxisType::AXIS_I;
}
else if ( face == cvf::StructGridInterface::POS_J || face == cvf::StructGridInterface::NEG_J )
{
axis = GridAxisType::AXIS_J;
}
else if ( face == cvf::StructGridInterface::POS_K || face == cvf::StructGridInterface::NEG_K )
{
axis = GridAxisType::AXIS_K;
}
return axis;
}
//--------------------------------------------------------------------------------------------------
/// Models with large absolute values for coordinate scalars will often end up with z-fighting due
/// to numerical limits in float used by OpenGL. displayModelOffset() is intended
// to be subtracted from a domain model coordinate when building geometry
//
// Used in StructGridGeometryGenerator::computeArrays()
//
// Vec3d domainModelCoord = ...
// Vec3d vizCoord = domainModelCoord - displayModelOffset();
//--------------------------------------------------------------------------------------------------
cvf::Vec3d StructGridInterface::displayModelOffset() const
{
return cvf::Vec3d::ZERO;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void StructGridInterface::characteristicCellSizes( double* iSize, double* jSize, double* kSize ) const
{
CVF_ASSERT( iSize && jSize && kSize );
if ( !hasValidCharacteristicCellSizes() )
{
std::vector<size_t> reservoirCellIndices;
reservoirCellIndices.resize( cellCountI() * cellCountJ() * cellCountK() );
std::iota( reservoirCellIndices.begin(), reservoirCellIndices.end(), 0 );
computeCharacteristicCellSize( reservoirCellIndices );
}
*iSize = m_characteristicCellSizeI;
*jSize = m_characteristicCellSizeJ;
*kSize = m_characteristicCellSizeK;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool StructGridInterface::hasValidCharacteristicCellSizes() const
{
if ( m_characteristicCellSizeI == cvf::UNDEFINED_DOUBLE || m_characteristicCellSizeJ == cvf::UNDEFINED_DOUBLE ||
m_characteristicCellSizeK == cvf::UNDEFINED_DOUBLE )
return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void StructGridInterface::computeCharacteristicCellSize( const std::vector<size_t>& globalCellIndices ) const
{
ubyte faceConnPosI[4];
cellFaceVertexIndices( StructGridInterface::POS_I, faceConnPosI );
ubyte faceConnNegI[4];
cellFaceVertexIndices( StructGridInterface::NEG_I, faceConnNegI );
ubyte faceConnPosJ[4];
cellFaceVertexIndices( StructGridInterface::POS_J, faceConnPosJ );
ubyte faceConnNegJ[4];
cellFaceVertexIndices( StructGridInterface::NEG_J, faceConnNegJ );
ubyte faceConnPosK[4];
cellFaceVertexIndices( StructGridInterface::POS_K, faceConnPosK );
ubyte faceConnNegK[4];
cellFaceVertexIndices( StructGridInterface::NEG_K, faceConnNegK );
double tolerance = 0.2;
int iterationIndex = 0;
const int iterationMaxCount = 3;
while ( iterationIndex < iterationMaxCount )
{
if ( iterationIndex > 0 )
{
// Divide tolerance by a factor for each iteration
tolerance = tolerance / 10.0;
}
double iLengthAccumulated = 0.0;
double jLengthAccumulated = 0.0;
double kLengthAccumulated = 0.0;
cvf::Vec3d cornerVerts[8];
size_t evaluatedCellCount = 0;
// Evaluate N-th cells, compute the stride between each index
size_t stride = std::max( size_t( 1 ), globalCellIndices.size() / 100 );
size_t i, j, k = 0;
size_t index = 0;
while ( index < globalCellIndices.size() - 1 )
{
size_t cellIndex = globalCellIndices[index];
ijkFromCellIndex( cellIndex, &i, &j, &k );
if ( isCellValid( i, j, k ) )
{
cellCornerVertices( cellIndex, cornerVerts );
cvf::BoundingBox bb;
for ( const auto& v : cornerVerts )
{
bb.add( v );
}
// Exclude cells with very small volumes
if ( bb.extent().z() > tolerance )
{
iLengthAccumulated += ( cornerVerts[faceConnPosI[0]] - cornerVerts[faceConnNegI[0]] ).lengthSquared();
iLengthAccumulated += ( cornerVerts[faceConnPosI[1]] - cornerVerts[faceConnNegI[3]] ).lengthSquared();
iLengthAccumulated += ( cornerVerts[faceConnPosI[2]] - cornerVerts[faceConnNegI[2]] ).lengthSquared();
iLengthAccumulated += ( cornerVerts[faceConnPosI[3]] - cornerVerts[faceConnNegI[1]] ).lengthSquared();
jLengthAccumulated += ( cornerVerts[faceConnPosJ[0]] - cornerVerts[faceConnNegJ[0]] ).lengthSquared();
jLengthAccumulated += ( cornerVerts[faceConnPosJ[1]] - cornerVerts[faceConnNegJ[3]] ).lengthSquared();
jLengthAccumulated += ( cornerVerts[faceConnPosJ[2]] - cornerVerts[faceConnNegJ[2]] ).lengthSquared();
jLengthAccumulated += ( cornerVerts[faceConnPosJ[3]] - cornerVerts[faceConnNegJ[1]] ).lengthSquared();
kLengthAccumulated += ( cornerVerts[faceConnPosK[0]] - cornerVerts[faceConnNegK[0]] ).lengthSquared();
kLengthAccumulated += ( cornerVerts[faceConnPosK[1]] - cornerVerts[faceConnNegK[3]] ).lengthSquared();
kLengthAccumulated += ( cornerVerts[faceConnPosK[2]] - cornerVerts[faceConnNegK[2]] ).lengthSquared();
kLengthAccumulated += ( cornerVerts[faceConnPosK[3]] - cornerVerts[faceConnNegK[1]] ).lengthSquared();
evaluatedCellCount++;
}
}
index += stride;
}
iterationIndex++;
if ( evaluatedCellCount > 10 || iterationIndex == iterationMaxCount )
{
double divisor = evaluatedCellCount * 4.0;
if ( divisor > 0.0 )
{
m_characteristicCellSizeI = cvf::Math::sqrt( iLengthAccumulated / divisor );
m_characteristicCellSizeJ = cvf::Math::sqrt( jLengthAccumulated / divisor );
m_characteristicCellSizeK = cvf::Math::sqrt( kLengthAccumulated / divisor );
return;
}
}
}
}
} // namespace cvf