ResInsight/ApplicationCode/ReservoirDataModel/RigNNCData.cpp
2017-03-06 11:58:07 +01:00

230 lines
9.8 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNNCData.h"
#include "RigMainGrid.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNNCData::RigNNCData()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::processConnections(const RigMainGrid& mainGrid)
{
//cvf::Trace::show("NNC: Total number: " + cvf::String((int)m_connections.size()));
for (size_t cnIdx = 0; cnIdx < m_connections.size(); ++cnIdx)
{
const RigCell& c1 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c1GlobIdx];
const RigCell& c2 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c2GlobIdx];
// Try to find the shared face
bool isPossibleNeighborInDirection[6]= {true, true, true, true, true, true};
if (c1.hostGrid() == c2.hostGrid())
{
char hasNeighbourInAnyDirection = 0;
size_t i1, j1, k1;
c1.hostGrid()->ijkFromCellIndex(c1.gridLocalCellIndex(), &i1, &j1, &k1);
size_t i2, j2, k2;
c2.hostGrid()->ijkFromCellIndex(c2.gridLocalCellIndex(), &i2, &j2, &k2);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ((i1 + 1) == i2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ((i2 + 1) == i1);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ((j1 + 1) == j2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ((j2 + 1) == j1);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ((k1 + 1) == k2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ((k2 + 1) == k1);
hasNeighbourInAnyDirection =
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K];
// If cell 2 is not adjancent with respect to any of the six ijk directions,
// assume that we have no overlapping area.
if (!hasNeighbourInAnyDirection)
{
// Add to search map
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
//cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
continue; // to next connection
}
}
// Possibly do some testing to avoid unneccesary overlap calculations
cvf::Vec3d normal;
for (char fIdx = 0; fIdx < 6; ++fIdx)
{
if (isPossibleNeighborInDirection[fIdx])
{
cvf::Vec3d fc1 = c1.faceCenter((cvf::StructGridInterface::FaceType)(fIdx));
cvf::Vec3d fc2 = c2.faceCenter(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)));
cvf::Vec3d fc1ToFc2 = fc2 - fc1;
normal = c1.faceNormalWithAreaLenght((cvf::StructGridInterface::FaceType)(fIdx));
normal.normalize();
// Check that face centers are approx in the face plane
if (normal.dot(fc1ToFc2) < 0.01*fc1ToFc2.length())
{
}
}
}
bool foundAnyOverlap = false;
for (char fIdx = 0; fIdx < 6; ++fIdx)
{
if (!isPossibleNeighborInDirection[fIdx])
{
continue;
}
// Calculate connection polygon
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
caf::SizeTArray4 face1;
caf::SizeTArray4 face2;
c1.faceIndices((cvf::StructGridInterface::FaceType)(fIdx), &face1);
c2.faceIndices(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)), &face2);
bool foundOverlap = cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)NULL,
cvf::wrapArrayConst(&mainGrid.nodes()),
face1.data(),
face2.data(),
1e-6);
if (foundOverlap)
{
foundAnyOverlap = true;
// Found an overlap polygon. Store data about connection
m_connections[cnIdx].m_c1Face = (cvf::StructGridInterface::FaceType)fIdx;
for (size_t pIdx = 0; pIdx < polygon.size(); ++pIdx)
{
if (polygon[pIdx] < mainGrid.nodes().size())
m_connections[cnIdx].m_polygon.push_back(mainGrid.nodes()[polygon[pIdx]]);
else
m_connections[cnIdx].m_polygon.push_back(intersections[polygon[pIdx] - mainGrid.nodes().size()]);
}
// Add to search map, possibly not needed
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][fIdx].push_back(cnIdx);
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx))].push_back(cnIdx);
break; // The connection face is found. Stop looping over the cell faces. Jump to next connection
}
}
if (!foundAnyOverlap)
{
//cvf::Trace::show("NNC: No overlap found for : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + "C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>& RigNNCData::makeConnectionScalarResult(size_t scalarResultIndex)
{
std::vector<double>& results = m_connectionResults[scalarResultIndex];
results.resize(m_connections.size(), HUGE_VAL);
return results;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::connectionScalarResult(size_t scalarResultIndex) const
{
std::map<size_t, std::vector<double> >::const_iterator it = m_connectionResults.find(scalarResultIndex);
if (it != m_connectionResults.end())
return &(it->second);
else
return NULL;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::setCombTransmisibilityScalarResultIndex(size_t scalarResultIndex)
{
std::map<size_t, std::vector<double> >::iterator it = m_connectionResults.find(cvf::UNDEFINED_SIZE_T);
if (it != m_connectionResults.end())
{
std::vector<double>& emptyData = m_connectionResults[scalarResultIndex];
std::vector<double>& realData = m_connectionResults[cvf::UNDEFINED_SIZE_T];
emptyData.swap(realData);
m_connectionResults.erase(cvf::UNDEFINED_SIZE_T);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigNNCData::hasScalarValues(size_t scalarResultIndex)
{
std::map<size_t, std::vector<double> >::iterator it = m_connectionResults.find(scalarResultIndex);
return (it != m_connectionResults.end());
}
/*
//--------------------------------------------------------------------------------------------------
/// TODO: Possibly not needed !
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigNNCData::findConnectionIndices( size_t reservoirCellIndex, cvf::StructGridInterface::FaceType face) const
{
ConnectionSearchMap::const_iterator it;
static std::vector<size_t> empty;
it = m_cellIdxToFaceToConnectionIdxMap.find(reservoirCellIndex);
if (it != m_cellIdxToFaceToConnectionIdxMap.end())
{
return it->second[face];
}
return empty;
}
*/