ResInsight/ApplicationCode/ReservoirDataModel/RigEclipseWellLogExtractor.cpp

157 lines
6.4 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseWellLogExtractor.h"
#include <map>
#include "RigCaseData.h"
#include "RigWellPath.h"
#include "RigResultAccessor.h"
#include "cvfBoundingBox.h"
#include "cvfGeometryTools.h"
#include "RigWellLogExtractionTools.h"
#include "RigMainGrid.h"
//==================================================================================================
///
//==================================================================================================
RigEclipseWellLogExtractor::RigEclipseWellLogExtractor(const RigCaseData* aCase, const RigWellPath* wellpath)
: m_caseData(aCase), m_wellPath(wellpath)
{
calculateIntersection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseWellLogExtractor::calculateIntersection()
{
const std::vector<cvf::Vec3d>& nodeCoords = m_caseData->mainGrid()->nodes();
bool isCellFaceNormalsOut = m_caseData->mainGrid()->isFaceNormalsOutwards();
if (!m_wellPath->m_wellPathPoints.size()) return ;
for (size_t wpp = 0; wpp < m_wellPath->m_wellPathPoints.size() - 1; ++wpp)
{
cvf::BoundingBox bb;
cvf::Vec3d p1 = m_wellPath->m_wellPathPoints[wpp];
cvf::Vec3d p2 = m_wellPath->m_wellPathPoints[wpp+1];
bb.add(p1);
bb.add(p2);
std::vector<size_t> closeCells = findCloseCells(bb);
std::vector<HexIntersectionInfo> intersections;
cvf::Vec3d hexCorners[8];
for (size_t cIdx = 0; cIdx < closeCells.size(); ++cIdx)
{
const RigCell& cell = m_caseData->mainGrid()->cells()[closeCells[cIdx]];
const caf::SizeTArray8& cornerIndices = cell.cornerIndices();
hexCorners[0] = nodeCoords[cornerIndices[0]];
hexCorners[1] = nodeCoords[cornerIndices[1]];
hexCorners[2] = nodeCoords[cornerIndices[2]];
hexCorners[3] = nodeCoords[cornerIndices[3]];
hexCorners[4] = nodeCoords[cornerIndices[4]];
hexCorners[5] = nodeCoords[cornerIndices[5]];
hexCorners[6] = nodeCoords[cornerIndices[6]];
hexCorners[7] = nodeCoords[cornerIndices[7]];
int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners, closeCells[cIdx], &intersections);
}
// Now, with all the intersections of this piece of line, we need to
// sort them in order, and set the measured depth and corresponding cell index
// map <WellPathDepthPoint, (CellIdx, intersectionPoint)>
std::map<WellPathDepthPoint, HexIntersectionInfo > sortedIntersections;
double md1 = m_wellPath->m_measuredDepths[wpp];
double md2 = m_wellPath->m_measuredDepths[wpp+1];
for (size_t intIdx = 0; intIdx < intersections.size(); ++intIdx)
{
if (!isCellFaceNormalsOut) intersections[intIdx].m_isIntersectionEntering = !intersections[intIdx].m_isIntersectionEntering ;
double lenghtAlongLineSegment1 = (intersections[intIdx].m_intersectionPoint - p1).length();
double lenghtAlongLineSegment2 = (p2 - intersections[intIdx].m_intersectionPoint).length();
double measuredDepthDiff = md2 - md1;
double lineLength = lenghtAlongLineSegment1 + lenghtAlongLineSegment2;
double measuredDepthOfPoint = 0.0;
if (lineLength > 0.00001)
{
measuredDepthOfPoint = md1 + measuredDepthDiff*lenghtAlongLineSegment1/(lineLength);
}
else
{
measuredDepthOfPoint = md1;
}
sortedIntersections.insert(std::make_pair(WellPathDepthPoint(measuredDepthOfPoint, intersections[intIdx].m_isIntersectionEntering), intersections[intIdx]));
}
// Now populate the return arrays
std::map<WellPathDepthPoint, HexIntersectionInfo >::iterator it;
it = sortedIntersections.begin();
while (it != sortedIntersections.end())
{
m_measuredDepth.push_back(it->first.measuredDepth);
m_trueVerticalDepth.push_back(abs(it->second.m_intersectionPoint[2]));
m_intersections.push_back(it->second.m_intersectionPoint);
m_intersectedCells.push_back(it->second.m_hexIndex);
m_intersectedCellFaces.push_back(it->second.m_face);
++it;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseWellLogExtractor::curveData(const RigResultAccessor* resultAccessor, std::vector<double>* values)
{
CVF_TIGHT_ASSERT(values);
values->resize(m_intersections.size());// + 1); // Plus one for the end of the wellpath stopping inside a cell
for (size_t cpIdx = 0; cpIdx < m_intersections.size(); ++cpIdx)
{
size_t cellIdx = m_intersectedCells[cpIdx];
cvf::StructGridInterface::FaceType cellFace = m_intersectedCellFaces[cpIdx];
(*values)[cpIdx] = resultAccessor->cellFaceScalarGlobIdx(cellIdx, cellFace);
}
// What do we do with the endpoint of the wellpath ?
// Ignore it for now ...
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigEclipseWellLogExtractor::findCloseCells(const cvf::BoundingBox& bb)
{
std::vector<size_t> closeCells;
m_caseData->mainGrid()->findIntersectingCells(bb, &closeCells);
return closeCells;
}