ResInsight/ApplicationCode/ReservoirDataModel/RigMainGrid.cpp
Jacob Støren 3468160d8f (#415) Use AABB tree for searching after cells
close to line segment for Eclipse cases
Fixed crash when well path geometry is empty
2015-09-07 16:24:45 +02:00

480 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigMainGrid.h"
#include "cvfAssert.h"
#include "RimDefines.h"
#include "RigFault.h"
#include "cvfBoundingBoxTree.h"
RigMainGrid::RigMainGrid(void)
: RigGridBase(this)
{
m_displayModelOffset = cvf::Vec3d::ZERO;
m_gridIndex = 0;
m_gridId = 0;
m_gridIdToIndexMapping.push_back(0);
m_flipXAxis = false;
m_flipYAxis = false;
}
RigMainGrid::~RigMainGrid(void)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::addLocalGrid(RigLocalGrid* localGrid)
{
CVF_ASSERT(localGrid && localGrid->gridId() != cvf::UNDEFINED_INT); // The grid ID must be set.
CVF_ASSERT(localGrid->gridId() >= 0); // We cant handle negative ID's if they exist.
m_localGrids.push_back(localGrid);
localGrid->setGridIndex(m_localGrids.size()); // Maingrid itself has grid index 0
if (m_gridIdToIndexMapping.size() <= static_cast<size_t>(localGrid->gridId()))
{
m_gridIdToIndexMapping.resize(localGrid->gridId() + 1, cvf::UNDEFINED_SIZE_T);
}
m_gridIdToIndexMapping[localGrid->gridId()] = localGrid->gridIndex();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::initAllSubGridsParentGridPointer()
{
initSubGridParentPointer();
size_t i;
for (i = 0; i < m_localGrids.size(); ++i)
{
m_localGrids[i]->initSubGridParentPointer();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::initAllSubCellsMainGridCellIndex()
{
initSubCellsMainGridCellIndex();
size_t i;
for (i = 0; i < m_localGrids.size(); ++i)
{
m_localGrids[i]->initSubCellsMainGridCellIndex();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigMainGrid::displayModelOffset() const
{
return m_displayModelOffset;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setDisplayModelOffset(cvf::Vec3d offset)
{
m_displayModelOffset = offset;
}
//--------------------------------------------------------------------------------------------------
/// Initialize pointers from grid to parent grid
/// Compute cell ranges for active and valid cells
/// Compute bounding box in world coordinates based on node coordinates
//--------------------------------------------------------------------------------------------------
void RigMainGrid::computeCachedData()
{
initAllSubGridsParentGridPointer();
initAllSubCellsMainGridCellIndex();
}
//--------------------------------------------------------------------------------------------------
/// Returns the grid with index \a localGridIndex. Main Grid itself has index 0. First LGR starts on 1
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridByIndex(size_t localGridIndex)
{
if (localGridIndex == 0) return this;
CVF_ASSERT(localGridIndex - 1 < m_localGrids.size()) ;
return m_localGrids[localGridIndex-1].p();
}
//--------------------------------------------------------------------------------------------------
/// Returns the grid with index \a localGridIndex. Main Grid itself has index 0. First LGR starts on 1
//--------------------------------------------------------------------------------------------------
const RigGridBase* RigMainGrid::gridByIndex(size_t localGridIndex) const
{
if (localGridIndex == 0) return this;
CVF_ASSERT(localGridIndex - 1 < m_localGrids.size()) ;
return m_localGrids[localGridIndex-1].p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setFlipAxis(bool flipXAxis, bool flipYAxis)
{
bool needFlipX = false;
bool needFlipY = false;
if (m_flipXAxis != flipXAxis)
{
needFlipX = true;
}
if (m_flipYAxis != flipYAxis)
{
needFlipY = true;
}
if (needFlipX || needFlipY)
{
for (size_t i = 0; i < m_nodes.size(); i++)
{
if (needFlipX)
{
m_nodes[i].x() *= -1.0;
}
if (needFlipY)
{
m_nodes[i].y() *= -1.0;
}
}
m_flipXAxis = flipXAxis;
m_flipYAxis = flipYAxis;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridById(int localGridId)
{
CVF_ASSERT (localGridId >= 0 && static_cast<size_t>(localGridId) < m_gridIdToIndexMapping.size());
return this->gridByIndex(m_gridIdToIndexMapping[localGridId]);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNNCData* RigMainGrid::nncData()
{
if (m_nncData.isNull())
{
m_nncData = new RigNNCData;
}
return m_nncData.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setFaults(const cvf::Collection<RigFault>& faults)
{
m_faults = faults;
#pragma omp parallel for
for (int i = 0; i < static_cast<int>(m_faults.size()); i++)
{
m_faults[i]->computeFaultFacesFromCellRanges(this->mainGrid());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::calculateFaults()
{
m_faultsPrCellAcc = new RigFaultsPrCellAccumulator(m_cells.size());
// Spread fault idx'es on the cells from the faults
for (size_t fIdx = 0 ; fIdx < m_faults.size(); ++fIdx)
{
m_faults[fIdx]->accumulateFaultsPrCell(m_faultsPrCellAcc.p(), static_cast<int>(fIdx));
}
// Find the geometrical faults that is in addition
RigFault * unNamedFault = new RigFault;
int unNamedFaultIdx = static_cast<int>(m_faults.size());
for (int gcIdx = 0 ; gcIdx < static_cast<int>(m_cells.size()); ++gcIdx)
{
if ( m_cells[gcIdx].isInvalid())
{
continue;
}
size_t neighborReservoirCellIdx;
size_t neighborGridCellIdx;
size_t i, j, k;
RigGridBase* hostGrid = NULL;
bool firstNO_FAULTFaceForCell = true;
for (char faceIdx = 0; faceIdx < 6; ++faceIdx)
{
cvf::StructGridInterface::FaceType face = cvf::StructGridInterface::FaceType(faceIdx);
if (m_faultsPrCellAcc->faultIdx(gcIdx, face) == RigFaultsPrCellAccumulator::NO_FAULT)
{
// Find neighbor cell
if (firstNO_FAULTFaceForCell) // To avoid doing this for every face, and only when detecting a NO_FAULT
{
hostGrid = m_cells[gcIdx].hostGrid();
hostGrid->ijkFromCellIndex(m_cells[gcIdx].gridLocalCellIndex(), &i,&j, &k);
firstNO_FAULTFaceForCell = false;
}
if(!hostGrid->cellIJKNeighbor(i, j, k, face, &neighborGridCellIdx))
{
continue;
}
neighborReservoirCellIdx = hostGrid->reservoirCellIndex(neighborGridCellIdx);
if (m_cells[neighborReservoirCellIdx].isInvalid())
{
continue;
}
double tolerance = 1e-6;
caf::SizeTArray4 faceIdxs;
m_cells[gcIdx].faceIndices(face, &faceIdxs);
caf::SizeTArray4 nbFaceIdxs;
m_cells[neighborReservoirCellIdx].faceIndices(StructGridInterface::oppositeFace(face), &nbFaceIdxs);
const std::vector<cvf::Vec3d>& vxs = m_mainGrid->nodes();
bool sharedFaceVertices = true;
if (sharedFaceVertices && vxs[faceIdxs[0]].pointDistance(vxs[nbFaceIdxs[0]]) > tolerance ) sharedFaceVertices = false;
if (sharedFaceVertices && vxs[faceIdxs[1]].pointDistance(vxs[nbFaceIdxs[3]]) > tolerance ) sharedFaceVertices = false;
if (sharedFaceVertices && vxs[faceIdxs[2]].pointDistance(vxs[nbFaceIdxs[2]]) > tolerance ) sharedFaceVertices = false;
if (sharedFaceVertices && vxs[faceIdxs[3]].pointDistance(vxs[nbFaceIdxs[1]]) > tolerance ) sharedFaceVertices = false;
if (sharedFaceVertices)
{
continue;
}
// To avoid doing this calculation for the opposite face
m_faultsPrCellAcc->setFaultIdx(gcIdx, face, unNamedFaultIdx);
m_faultsPrCellAcc->setFaultIdx(neighborReservoirCellIdx, StructGridInterface::oppositeFace(face), unNamedFaultIdx);
// Add as fault face only if the grid index is less than the neighbors
if (static_cast<size_t>(gcIdx) < neighborReservoirCellIdx)
{
{
RigFault::FaultFace ff(gcIdx, cvf::StructGridInterface::FaceType(faceIdx), neighborReservoirCellIdx);
unNamedFault->faultFaces().push_back(ff);
}
}
else
{
CVF_FAIL_MSG("Found fault with global neighbor index less than the native index. "); // Should never occur. because we flag the opposite face in the faultsPrCellAcc
}
}
}
}
if (unNamedFault->faultFaces().size())
{
unNamedFault->setName(RimDefines::undefinedGridFaultName());
m_faults.push_back(unNamedFault);
}
// Distribute nnc's to the faults
const std::vector<RigConnection>& nncs = this->nncData()->connections();
for (size_t nncIdx = 0; nncIdx < nncs.size(); ++nncIdx)
{
// Find the fault for each side of the nnc
const RigConnection& conn = nncs[nncIdx];
int fIdx1 = RigFaultsPrCellAccumulator::NO_FAULT;
int fIdx2 = RigFaultsPrCellAccumulator::NO_FAULT;
if (conn.m_c1Face != StructGridInterface::NO_FACE)
{
fIdx1 = m_faultsPrCellAcc->faultIdx(conn.m_c1GlobIdx, conn.m_c1Face);
fIdx2 = m_faultsPrCellAcc->faultIdx(conn.m_c2GlobIdx, StructGridInterface::oppositeFace(conn.m_c1Face));
}
if (fIdx1 < 0 && fIdx2 < 0)
{
cvf::String lgrString ("Same Grid");
if (m_cells[conn.m_c1GlobIdx].hostGrid() != m_cells[conn.m_c2GlobIdx].hostGrid() )
{
lgrString = "Different Grid";
}
//cvf::Trace::show("NNC: No Fault for NNC C1: " + cvf::String((int)conn.m_c1GlobIdx) + " C2: " + cvf::String((int)conn.m_c2GlobIdx) + " Grid: " + lgrString);
}
if (fIdx1 >= 0)
{
// Add the connection to both, if they are different.
m_faults[fIdx1]->connectionIndices().push_back(nncIdx);
}
if (fIdx2 != fIdx1)
{
if (fIdx2 >= 0)
{
m_faults[fIdx2]->connectionIndices().push_back(nncIdx);
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// The cell is normally inverted due to Depth becoming -Z at import,
/// but if (only) one of the flipX/Y is done, the cell is back to normal
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::isFaceNormalsOutwards() const
{
for (int gcIdx = 0 ; gcIdx < static_cast<int>(m_cells.size()); ++gcIdx)
{
if (!m_cells[gcIdx].isInvalid())
{
cvf::Vec3d cellCenter = m_cells[gcIdx].center();
cvf::Vec3d faceCenter = m_cells[gcIdx].faceCenter(StructGridInterface::POS_I);
cvf::Vec3d faceNormal = m_cells[gcIdx].faceNormalWithAreaLenght(StructGridInterface::POS_I);
double typicalIJCellSize = characteristicIJCellSize();
double dummy, dummy2, typicalKSize;
characteristicCellSizes(&dummy, &dummy2, &typicalKSize);
if ( (faceCenter - cellCenter).length() > 0.2 * typicalIJCellSize
&& (faceNormal.length() > (0.2 * typicalIJCellSize * 0.2* typicalKSize)))
{
// Cell is assumed ok to use, so calculate whether the normals are outwards or inwards
if ((faceCenter - cellCenter) * faceNormal >= 0)
{
return true;
}
else
{
return false;
}
}
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFault* RigMainGrid::findFaultFromCellIndexAndCellFace(size_t reservoirCellIndex, cvf::StructGridInterface::FaceType face) const
{
CVF_ASSERT(m_faultsPrCellAcc.notNull());
int faultIdx = m_faultsPrCellAcc->faultIdx(reservoirCellIndex, face);
if (faultIdx != RigFaultsPrCellAccumulator::NO_FAULT )
{
return m_faults.at(faultIdx);
}
#if 0
for (size_t i = 0; i < m_faults.size(); i++)
{
const RigFault* rigFault = m_faults.at(i);
const std::vector<RigFault::FaultFace>& faultFaces = rigFault->faultFaces();
for (size_t fIdx = 0; fIdx < faultFaces.size(); fIdx++)
{
if (faultFaces[fIdx].m_nativeReservoirCellIndex == cellIndex)
{
if (face == faultFaces[fIdx].m_nativeFace )
{
return rigFault;
}
}
if (faultFaces[fIdx].m_oppositeReservoirCellIndex == cellIndex)
{
if (face == cvf::StructGridInterface::oppositeFace(faultFaces[fIdx].m_nativeFace))
{
return rigFault;
}
}
}
}
#endif
return NULL;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::findIntersectingCells(const cvf::BoundingBox& inputBB, std::vector<size_t>* cellIndices) const
{
if (m_cellSearchTree.isNull())
{
// build tree
size_t cellCount = m_cells.size();
std::vector<cvf::BoundingBox> cellBoundingBoxes;
cellBoundingBoxes.resize(cellCount);
for (size_t cIdx = 0; cIdx < cellCount; ++cIdx)
{
const caf::SizeTArray8& cellIndices = m_cells[cIdx].cornerIndices();
cvf::BoundingBox& cellBB = cellBoundingBoxes[cIdx];
cellBB.add(m_nodes[cellIndices[0]]);
cellBB.add(m_nodes[cellIndices[1]]);
cellBB.add(m_nodes[cellIndices[2]]);
cellBB.add(m_nodes[cellIndices[3]]);
cellBB.add(m_nodes[cellIndices[4]]);
cellBB.add(m_nodes[cellIndices[5]]);
cellBB.add(m_nodes[cellIndices[6]]);
cellBB.add(m_nodes[cellIndices[7]]);
}
m_cellSearchTree = new cvf::BoundingBoxTree;
m_cellSearchTree->buildTreeFromBoundingBoxes(cellBoundingBoxes, NULL);
}
m_cellSearchTree->findIntersections(inputBB, cellIndices);
}