ResInsight/ApplicationCode/ReservoirDataModel/RigFlowDiagStatCalc.cpp

134 lines
5.4 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFlowDiagStatCalc.h"
#include "RigCaseCellResultsData.h"
#include "RigFlowDiagResults.h"
#include "RigStatisticsMath.h"
#include "RigWeightedMeanCalc.h"
#include "RimEclipseResultCase.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagStatCalc::RigFlowDiagStatCalc(RigFlowDiagResults* flowDiagResults, const RigFlowDiagResultAddress& resVarAddr)
: m_resVarAddr(resVarAddr)
{
m_resultsData = flowDiagResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max)
{
MinMaxAccumulator minMaxCalc(min, max);
const std::vector<double>* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
if (vals) minMaxCalc.addData(*vals);
min = minMaxCalc.min;
max = minMaxCalc.max;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg)
{
PosNegAccumulator posNegCalc(pos, neg);
const std::vector<double>* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
if ( vals ) posNegCalc.addData(*vals);
pos = posNegCalc.pos;
neg = posNegCalc.neg;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::valueSumAndSampleCount(size_t timeStepIndex, double& valueSum, size_t& sampleCount)
{
SumCountAccumulator sumCountCalc(valueSum, sampleCount);
const std::vector<double>* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
if ( vals ) sumCountCalc.addData(*vals);
valueSum = sumCountCalc.valueSum;
sampleCount = sumCountCalc.sampleCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::addDataToHistogramCalculator(size_t timeStepIndex, RigHistogramCalculator& histogramCalculator)
{
const std::vector<double>* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
if ( vals ) histogramCalculator.addData(*vals);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::uniqueValues(size_t timeStepIndex, std::set<int>& uniqueValues)
{
const std::vector<double>* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
if ( vals ) for ( double val : (*vals) ) uniqueValues.insert(static_cast<int>(val));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigFlowDiagStatCalc::timeStepCount()
{
return m_resultsData->timeStepCount();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::mobileVolumeWeightedMean(size_t timeStepIndex, double& mean)
{
RimEclipseResultCase* eclCase = nullptr;
m_resultsData->flowDiagSolution()->firstAncestorOrThisOfType(eclCase);
if (!eclCase) return;
RigCaseCellResultsData* caseCellResultsData = eclCase->results(RiaDefines::MATRIX_MODEL);
RigEclipseResultAddress mobPoreVolResAddr(RiaDefines::ResultCatType::STATIC_NATIVE, RiaDefines::mobilePoreVolumeName());
caseCellResultsData->ensureKnownResultLoaded(mobPoreVolResAddr);
const std::vector<double>& weights = caseCellResultsData->cellScalarResults(mobPoreVolResAddr, 0);
const std::vector<double>* values = m_resultsData->resultValues(m_resVarAddr, timeStepIndex);
const RigActiveCellInfo* actCellInfo = m_resultsData->activeCellInfo(m_resVarAddr);
RigWeightedMeanCalc::weightedMeanOverCells(&weights, values, nullptr, false, actCellInfo, true, &mean);
}