ResInsight/ApplicationCode/ProjectDataModel/Flow/RimFlowCharacteristicsPlot.cpp

841 lines
32 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFlowCharacteristicsPlot.h"
#include "RiaApplication.h"
#include "RiaPreferences.h"
#include "RifCsvDataTableFormatter.h"
#include "RigActiveCellInfo.h"
#include "RigEclipseCaseData.h"
#include "RigFlowDiagResults.h"
#include "RimEclipseCellColors.h"
#include "RimEclipsePropertyFilter.h"
#include "RimEclipsePropertyFilterCollection.h"
#include "RimEclipseResultCase.h"
#include "RimEclipseView.h"
#include "RimFaultInViewCollection.h"
#include "RimFlowDiagSolution.h"
#include "RimProject.h"
#include "RicEclipsePropertyFilterFeatureImpl.h"
#include "RicSelectOrCreateViewFeatureImpl.h"
#include "RiuFlowCharacteristicsPlot.h"
#include "RiuMainWindow.h"
#include "cafPdmUiCheckBoxEditor.h"
#include "cafPdmUiListEditor.h"
#include "cafPdmUiPushButtonEditor.h"
#include "cafUtils.h"
#include <QDateTime>
#include <cmath> // Needed for HUGE_VAL on Linux
namespace caf
{
template<>
void AppEnum<RimFlowCharacteristicsPlot::TimeSelectionType>::setUp()
{
addItem(RimFlowCharacteristicsPlot::ALL_AVAILABLE, "ALL_AVAILABLE", "All With Calculated Flow Diagnostics");
addItem(RimFlowCharacteristicsPlot::SELECTED, "SELECTED", "Selected");
setDefault(RimFlowCharacteristicsPlot::SELECTED);
}
} // namespace caf
CAF_PDM_SOURCE_INIT(RimFlowCharacteristicsPlot, "FlowCharacteristicsPlot");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFlowCharacteristicsPlot::RimFlowCharacteristicsPlot()
{
CAF_PDM_InitObject("Flow Characteristics", ":/FlowCharPlot16x16.png", "", "");
CAF_PDM_InitFieldNoDefault(&m_case, "FlowCase", "Case", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_flowDiagSolution, "FlowDiagSolution", "Flow Diag Solution", "", "", "");
m_flowDiagSolution.uiCapability()->setUiHidden(true);
CAF_PDM_InitFieldNoDefault(&m_timeStepSelectionType, "TimeSelectionType", "Time Steps", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_selectedTimeSteps, "SelectedTimeSteps", "", "", "", "");
m_selectedTimeSteps.uiCapability()->setUiHidden(true);
CAF_PDM_InitFieldNoDefault(&m_selectedTimeStepsUi, "SelectedTimeStepsUi", "", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_applyTimeSteps, "ApplyTimeSteps", "", "", "", "");
caf::PdmUiPushButtonEditor::configureEditorForField(&m_applyTimeSteps);
CAF_PDM_InitField(&m_maxPvFraction,
"CellPVThreshold",
0.1,
"Aquifer Cell Threshold",
"",
"Exclude Aquifer Effects by adding a Cell Pore Volume Threshold as Fraction of Total Pore Volume.",
"");
CAF_PDM_InitField(&m_showLegend, "ShowLegend", true, "Legend", "", "", "");
// Region group
CAF_PDM_InitFieldNoDefault(&m_cellFilter, "CellFilter", "Cell Filter", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_cellFilterView, "CellFilterView", "View", "", "", "");
CAF_PDM_InitField(&m_tracerFilter, "TracerFilter", QString(), "Tracer Filter", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_selectedTracerNames, "SelectedTracerNames", " ", "", "", "");
m_selectedTracerNames.uiCapability()->setUiEditorTypeName(caf::PdmUiListEditor::uiEditorTypeName());
CAF_PDM_InitFieldNoDefault(&m_showRegion, "ShowRegion", "", "", "", "");
caf::PdmUiPushButtonEditor::configureEditorForField(&m_showRegion);
CAF_PDM_InitField(&m_minCommunication, "MinCommunication", 0.0, "Min Communication", "", "", "");
CAF_PDM_InitField(&m_maxTof, "MaxTof", 146000, "Max Time of Flight [days]", "", "", "");
this->m_showWindow = false;
setAsPlotMdiWindow();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFlowCharacteristicsPlot::~RimFlowCharacteristicsPlot()
{
removeMdiWindowFromMdiArea();
deleteViewWidget();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::setFromFlowSolution(RimFlowDiagSolution* flowSolution)
{
if (!flowSolution)
{
m_case = nullptr;
m_cellFilterView = nullptr;
}
else
{
RimEclipseResultCase* eclCase;
flowSolution->firstAncestorOrThisOfType(eclCase);
m_case = eclCase;
if (!eclCase->reservoirViews.empty())
{
m_cellFilterView = eclCase->reservoirViews()[0];
}
}
m_flowDiagSolution = flowSolution;
m_showWindow = true;
m_timeStepToFlowResultMap.clear();
m_currentlyPlottedTimeSteps.clear();
onLoadDataAndUpdate();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::deleteViewWidget()
{
if (m_flowCharPlotWidget)
{
m_flowCharPlotWidget->deleteLater();
m_flowCharPlotWidget = nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::updateCurrentTimeStep()
{
if (m_timeStepSelectionType() != ALL_AVAILABLE) return;
if (!m_flowDiagSolution()) return;
RigFlowDiagResults* flowResult = m_flowDiagSolution->flowDiagResults();
std::vector<int> calculatedTimesteps = flowResult->calculatedTimeSteps(RigFlowDiagResultAddress::PHASE_ALL);
if (m_currentlyPlottedTimeSteps == calculatedTimesteps) return;
this->onLoadDataAndUpdate();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::setTimeSteps(const std::vector<int>& timeSteps)
{
m_selectedTimeSteps = timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::setInjectorsAndProducers(const std::vector<QString>& injectors,
const std::vector<QString>& producers)
{
std::vector<QString> allTracers;
allTracers = producers;
allTracers.insert(allTracers.end(), injectors.begin(), injectors.end());
if (producers.empty() && !injectors.empty())
{
m_cellFilter = RigFlowDiagResults::CELLS_FLOODED;
}
else if (!producers.empty() && injectors.empty())
{
m_cellFilter = RigFlowDiagResults::CELLS_DRAINED;
}
else if (!producers.empty() && !injectors.empty())
{
m_cellFilter = RigFlowDiagResults::CELLS_COMMUNICATION;
}
m_selectedTracerNames = allTracers;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::setMinimumCommunication(double minimumCommunication)
{
m_minCommunication = minimumCommunication;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::setAquiferCellThreshold(double aquiferCellThreshold)
{
m_maxPvFraction = aquiferCellThreshold;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimFlowCharacteristicsPlot::calculateValueOptions(const caf::PdmFieldHandle* fieldNeedingOptions,
bool* useOptionsOnly)
{
QList<caf::PdmOptionItemInfo> options;
if (fieldNeedingOptions == &m_case)
{
RimProject* proj = nullptr;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
std::vector<RimEclipseResultCase*> cases;
proj->descendantsIncludingThisOfType(cases);
for (RimEclipseResultCase* c : cases)
{
if (c->defaultFlowDiagSolution())
{
options.push_back(caf::PdmOptionItemInfo(c->caseUserDescription(), c, false, c->uiIconProvider()));
}
}
}
}
else if (fieldNeedingOptions == &m_cellFilterView)
{
if (m_case)
{
for (RimEclipseView* view : m_case()->reservoirViews())
{
options.push_back(caf::PdmOptionItemInfo(view->name(), view, false, view->uiIconProvider()));
}
}
}
else if (fieldNeedingOptions == &m_flowDiagSolution)
{
if (m_case)
{
std::vector<RimFlowDiagSolution*> flowSols = m_case->flowDiagSolutions();
options.push_back(caf::PdmOptionItemInfo("None", nullptr));
for (RimFlowDiagSolution* flowSol : flowSols)
{
options.push_back(caf::PdmOptionItemInfo(flowSol->userDescription(), flowSol, false, flowSol->uiIconProvider()));
}
}
}
else if (fieldNeedingOptions == &m_selectedTimeStepsUi)
{
if (m_flowDiagSolution && m_case)
{
QStringList timeStepDates = m_case->timeStepStrings();
std::vector<int> calculatedTimeSteps =
m_flowDiagSolution()->flowDiagResults()->calculatedTimeSteps(RigFlowDiagResultAddress::PHASE_ALL);
for (int tsIdx = 0; tsIdx < timeStepDates.size(); ++tsIdx)
{
auto it = std::find(calculatedTimeSteps.begin(), calculatedTimeSteps.end(), tsIdx);
QString itemText = timeStepDates[tsIdx];
if (it != calculatedTimeSteps.end())
{
itemText = itemText + " *";
}
options.push_back(caf::PdmOptionItemInfo(itemText, tsIdx));
}
}
}
else if (fieldNeedingOptions == &m_selectedTracerNames)
{
if (m_flowDiagSolution)
{
std::vector<QString> tracerNames = m_flowDiagSolution->tracerNames();
std::vector<std::pair<QString, QString>> sortedTracerNames;
for (QString tracerName : tracerNames)
{
if (!caf::Utils::isStringMatch(m_tracerFilter, tracerName)) continue;
RimFlowDiagSolution::TracerStatusType tracerStatus = m_flowDiagSolution->tracerStatusOverall(tracerName);
if (tracerStatus == RimFlowDiagSolution::CLOSED) continue;
if (m_cellFilter() == RigFlowDiagResults::CELLS_FLOODED)
{
if (tracerStatus == RimFlowDiagSolution::INJECTOR || tracerStatus == RimFlowDiagSolution::VARYING)
{
sortedTracerNames.push_back(std::make_pair(tracerName, tracerName));
}
}
else if (m_cellFilter() == RigFlowDiagResults::CELLS_DRAINED)
{
if (tracerStatus == RimFlowDiagSolution::PRODUCER || tracerStatus == RimFlowDiagSolution::VARYING)
{
sortedTracerNames.push_back(std::make_pair(tracerName, tracerName));
}
}
else if (m_cellFilter() == RigFlowDiagResults::CELLS_COMMUNICATION)
{
QString prefix;
switch (tracerStatus)
{
case RimFlowDiagSolution::INJECTOR:
prefix = "I : ";
break;
case RimFlowDiagSolution::PRODUCER:
prefix = "P : ";
break;
case RimFlowDiagSolution::VARYING:
prefix = "I/P: ";
break;
case RimFlowDiagSolution::UNDEFINED:
prefix = "U : ";
break;
}
sortedTracerNames.push_back(std::make_pair(prefix + tracerName, tracerName));
}
}
std::sort(sortedTracerNames.begin(),
sortedTracerNames.end(),
[](const std::pair<QString, QString>& a, const std::pair<QString, QString>& b) -> bool {
return a.first < b.first;
});
for (auto& tracer : sortedTracerNames)
{
options.push_back(caf::PdmOptionItemInfo(tracer.first, tracer.second));
}
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::defineUiOrdering(QString uiConfigName, caf::PdmUiOrdering& uiOrdering)
{
{
// Ensure a case is selected if one is available
RimProject* proj = nullptr;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
std::vector<RimEclipseResultCase*> cases;
proj->descendantsIncludingThisOfType(cases);
RimEclipseResultCase* defaultCase = nullptr;
for (RimEclipseResultCase* c : cases)
{
if (c->defaultFlowDiagSolution())
{
if (!defaultCase) defaultCase = c; // Select first
}
}
if (!m_case() && defaultCase)
{
m_case = defaultCase;
m_flowDiagSolution = m_case->defaultFlowDiagSolution();
if (!m_case()->reservoirViews.empty())
{
m_cellFilterView = m_case()->reservoirViews()[0];
}
}
}
}
uiOrdering.add(&m_case);
{
caf::PdmUiGroup* timeStepsGroup = uiOrdering.addNewGroup("Time Steps");
timeStepsGroup->add(&m_timeStepSelectionType);
if (m_timeStepSelectionType == SELECTED)
{
timeStepsGroup->add(&m_selectedTimeStepsUi);
timeStepsGroup->add(&m_applyTimeSteps);
}
}
{
caf::PdmUiGroup* regionGroup = uiOrdering.addNewGroup("Region");
regionGroup->add(&m_cellFilter);
if (m_cellFilter() == RigFlowDiagResults::CELLS_COMMUNICATION || m_cellFilter() == RigFlowDiagResults::CELLS_DRAINED ||
m_cellFilter() == RigFlowDiagResults::CELLS_FLOODED)
{
regionGroup->add(&m_tracerFilter);
regionGroup->add(&m_selectedTracerNames);
regionGroup->add(&m_showRegion);
}
else if (m_cellFilter() == RigFlowDiagResults::CELLS_VISIBLE)
{
regionGroup->add(&m_cellFilterView);
}
if (m_cellFilter() == RigFlowDiagResults::CELLS_COMMUNICATION)
{
regionGroup->add(&m_minCommunication);
}
else if (m_cellFilter() == RigFlowDiagResults::CELLS_DRAINED || m_cellFilter() == RigFlowDiagResults::CELLS_FLOODED)
{
regionGroup->add(&m_maxTof);
}
}
{
caf::PdmUiGroup* optionsGroup = uiOrdering.addNewGroup("Options");
optionsGroup->add(&m_flowDiagSolution);
optionsGroup->add(&m_showLegend);
optionsGroup->add(&m_maxPvFraction);
}
uiOrdering.skipRemainingFields();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::defineEditorAttribute(const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute)
{
if (field == &m_applyTimeSteps)
{
caf::PdmUiPushButtonEditorAttribute* attrib = dynamic_cast<caf::PdmUiPushButtonEditorAttribute*>(attribute);
if (attrib)
{
attrib->m_buttonText = "Apply";
}
}
else if (field == &m_showRegion)
{
caf::PdmUiPushButtonEditorAttribute* attrib = dynamic_cast<caf::PdmUiPushButtonEditorAttribute*>(attribute);
if (attrib)
{
attrib->m_buttonText = "Show Region";
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QWidget* RimFlowCharacteristicsPlot::viewWidget()
{
return m_flowCharPlotWidget;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::zoomAll()
{
if (m_flowCharPlotWidget) m_flowCharPlotWidget->zoomAll();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::fieldChangedByUi(const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue)
{
RimViewWindow::fieldChangedByUi(changedField, oldValue, newValue);
if (&m_case == changedField)
{
m_flowDiagSolution = m_case->defaultFlowDiagSolution();
m_currentlyPlottedTimeSteps.clear();
if (!m_case()->reservoirViews.empty())
{
m_cellFilterView = m_case()->reservoirViews()[0];
}
}
else if (&m_applyTimeSteps == changedField)
{
if (m_flowDiagSolution)
{
// Compute any missing time steps from selected
for (int tsIdx : m_selectedTimeStepsUi())
{
m_flowDiagSolution()->flowDiagResults()->maxAbsPairFlux(tsIdx);
}
m_selectedTimeSteps = m_selectedTimeStepsUi;
}
m_applyTimeSteps = false;
}
else if (&m_showRegion == changedField)
{
if (m_case)
{
if (m_cellFilter() != RigFlowDiagResults::CELLS_ACTIVE)
{
RimEclipseView* view = RicSelectOrCreateViewFeatureImpl::showViewSelection(
m_case, "FlowCharacteristicsLastUsedView", "RegionView", "Show Region in View");
if (view != nullptr)
{
view->faultCollection()->showFaultCollection = false;
view->cellResult()->setResultType(RiaDefines::FLOW_DIAGNOSTICS);
view->cellResult()->setFlowDiagTracerSelectionType(RimEclipseResultDefinition::FLOW_TR_BY_SELECTION);
view->cellResult()->setSelectedTracers(m_selectedTracerNames);
if (m_cellFilter() == RigFlowDiagResults::CELLS_COMMUNICATION)
{
view->cellResult()->setResultVariable(RIG_FLD_COMMUNICATION_RESNAME);
}
else
{
view->cellResult()->setResultVariable(RIG_FLD_TOF_RESNAME);
}
int timeStep = 0;
if (m_timeStepSelectionType() == ALL_AVAILABLE)
{
if (m_flowDiagSolution)
{
std::vector<int> timeSteps =
m_flowDiagSolution()->flowDiagResults()->calculatedTimeSteps(RigFlowDiagResultAddress::PHASE_ALL);
if (!timeSteps.empty())
{
timeStep = timeSteps[0];
}
}
}
else
{
if (!m_selectedTimeStepsUi().empty())
{
timeStep = m_selectedTimeStepsUi()[0];
}
}
// Ensure selected time step has computed results
m_flowDiagSolution()->flowDiagResults()->maxAbsPairFlux(timeStep);
view->setCurrentTimeStep(timeStep);
for (RimEclipsePropertyFilter* f : view->eclipsePropertyFilterCollection()->propertyFilters())
{
f->isActive = false;
}
RicEclipsePropertyFilterFeatureImpl::addPropertyFilter(view->eclipsePropertyFilterCollection());
view->loadDataAndUpdate();
m_case->updateConnectedEditors();
RicSelectOrCreateViewFeatureImpl::focusView(view);
}
}
}
}
else if (changedField == &m_cellFilter)
{
m_selectedTracerNames = std::vector<QString>();
}
// All fields update plot
this->onLoadDataAndUpdate();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QImage RimFlowCharacteristicsPlot::snapshotWindowContent()
{
QImage image;
if (m_flowCharPlotWidget)
{
QPixmap pix = QPixmap::grabWidget(m_flowCharPlotWidget);
image = pix.toImage();
}
return image;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::onLoadDataAndUpdate()
{
updateMdiWindowVisibility();
if (m_flowDiagSolution && m_flowCharPlotWidget)
{
RigFlowDiagResults* flowResult = m_flowDiagSolution->flowDiagResults();
{
std::vector<int> calculatedTimesteps = flowResult->calculatedTimeSteps(RigFlowDiagResultAddress::PHASE_ALL);
if (m_timeStepSelectionType == SELECTED)
{
for (int tsIdx : m_selectedTimeSteps())
{
m_flowDiagSolution()->flowDiagResults()->maxAbsPairFlux(tsIdx);
}
calculatedTimesteps = m_selectedTimeSteps();
}
m_currentlyPlottedTimeSteps = calculatedTimesteps;
}
std::vector<QDateTime> timeStepDates = m_case->timeStepDates();
QStringList timeStepStrings = m_case->timeStepStrings();
std::vector<double> lorenzVals(timeStepDates.size(), HUGE_VAL);
m_flowCharPlotWidget->removeAllCurves();
std::vector<QString> selectedTracerNames = m_selectedTracerNames();
if (m_cellFilter() == RigFlowDiagResults::CELLS_ACTIVE)
{
if (m_flowDiagSolution)
{
selectedTracerNames = m_flowDiagSolution->tracerNames();
}
}
std::map<int, RigFlowDiagSolverInterface::FlowCharacteristicsResultFrame> timeStepToFlowResultMap;
for (int timeStepIdx : m_currentlyPlottedTimeSteps)
{
if (m_cellFilter() == RigFlowDiagResults::CELLS_VISIBLE)
{
cvf::UByteArray visibleCells;
m_case()->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
if (m_cellFilterView)
{
m_cellFilterView()->calculateCurrentTotalCellVisibility(&visibleCells, timeStepIdx);
}
RigActiveCellInfo* activeCellInfo = m_case()->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
std::vector<char> visibleActiveCells(activeCellInfo->reservoirActiveCellCount(), 0);
for (size_t i = 0; i < visibleCells.size(); ++i)
{
size_t cellIndex = activeCellInfo->cellResultIndex(i);
if (cellIndex != cvf::UNDEFINED_SIZE_T)
{
visibleActiveCells[cellIndex] = visibleCells[i];
}
}
auto flowCharResults = flowResult->flowCharacteristicsResults(timeStepIdx, visibleActiveCells, m_maxPvFraction());
timeStepToFlowResultMap[timeStepIdx] = flowCharResults;
}
else
{
auto flowCharResults = flowResult->flowCharacteristicsResults(
timeStepIdx, m_cellFilter(), selectedTracerNames, m_maxPvFraction(), m_minCommunication(), m_maxTof());
timeStepToFlowResultMap[timeStepIdx] = flowCharResults;
}
lorenzVals[timeStepIdx] = timeStepToFlowResultMap[timeStepIdx].m_lorenzCoefficient;
}
m_timeStepToFlowResultMap = timeStepToFlowResultMap;
m_flowCharPlotWidget->setLorenzCurve(timeStepStrings, timeStepDates, lorenzVals);
for (int timeStepIdx : m_currentlyPlottedTimeSteps)
{
const auto& flowCharResults = timeStepToFlowResultMap[timeStepIdx];
m_flowCharPlotWidget->addFlowCapStorageCapCurve(timeStepDates[timeStepIdx],
flowCharResults.m_storageCapFlowCapCurve.first,
flowCharResults.m_storageCapFlowCapCurve.second);
m_flowCharPlotWidget->addSweepEfficiencyCurve(timeStepDates[timeStepIdx],
flowCharResults.m_dimensionlessTimeSweepEfficiencyCurve.first,
flowCharResults.m_dimensionlessTimeSweepEfficiencyCurve.second);
}
m_flowCharPlotWidget->showLegend(m_showLegend());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFlowCharacteristicsPlot::viewGeometryUpdated()
{
if (m_cellFilter() == RigFlowDiagResults::CELLS_VISIBLE)
{
// Only need to reload data if cell filtering is based on visible cells in view.
onLoadDataAndUpdate();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double interpolate(std::vector<double>& xData, std::vector<double>& yData, double x, bool extrapolate)
{
size_t itemCount = xData.size();
size_t index = 0;
if (x >= xData[itemCount - 2])
{
index = itemCount - 2;
}
else
{
while (x > xData[index + 1])
index++;
}
double xLeft = xData[index];
double yLeft = yData[index];
double xRight = xData[index + 1];
double yRight = yData[index + 1];
if (!extrapolate)
{
if (x < xLeft) yRight = yLeft;
if (x > xRight) yLeft = yRight;
}
double dydx = (yRight - yLeft) / (xRight - xLeft);
return yLeft + dydx * (x - xLeft);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFlowCharacteristicsPlot::curveDataAsText() const
{
QString fieldSeparator = RiaApplication::instance()->preferences()->csvTextExportFieldSeparator;
QString tableText;
QTextStream stream(&tableText);
RifCsvDataTableFormatter formatter(stream, fieldSeparator);
std::vector<RifEclipseOutputTableColumn> header = {
RifEclipseOutputTableColumn("Date"),
RifEclipseOutputTableColumn("StorageCapacity"),
RifEclipseOutputTableColumn("FlowCapacity"),
RifEclipseOutputTableColumn("SweepEfficiency"),
RifEclipseOutputTableColumn("DimensionlessTime"),
RifEclipseOutputTableColumn("LorentzCoefficient"),
};
formatter.header(header);
std::vector<QDateTime> timeStepDates = m_case->timeStepDates();
std::vector<double> storageCapacitySamplingValues = {0.08, 0.1, 0.2, 0.3, 0.4};
size_t sampleCount = storageCapacitySamplingValues.size();
for (const auto& timeIndex : m_currentlyPlottedTimeSteps)
{
QString dateString = timeStepDates[timeIndex].toString("yyyy-MM-dd");
auto a = m_timeStepToFlowResultMap.find(timeIndex);
if (a != m_timeStepToFlowResultMap.end())
{
auto storageCapacityValues = a->second.m_storageCapFlowCapCurve.first;
auto flowCapacityValues = a->second.m_storageCapFlowCapCurve.second;
bool extrapolate = false;
std::vector<double> flowCapacitySamplingValues;
for (const auto storageCapacity : storageCapacitySamplingValues)
{
{
double flowCapacity = interpolate(storageCapacityValues, flowCapacityValues, storageCapacity, extrapolate);
flowCapacitySamplingValues.push_back(flowCapacity);
}
}
auto dimensionLessTimeValues = a->second.m_dimensionlessTimeSweepEfficiencyCurve.first;
auto sweepEffValues = a->second.m_dimensionlessTimeSweepEfficiencyCurve.second;
std::vector<double> dimensionLessTimeSamplingValues;
std::vector<double> sweepEffSamplingValues;
double range = dimensionLessTimeValues.back() - dimensionLessTimeValues[0];
double step = range / sampleCount;
for (size_t i = 0; i < sampleCount; i++)
{
double dimensionLessTimeValue = i * step;
dimensionLessTimeSamplingValues.push_back(dimensionLessTimeValue);
double sweepEffValue = interpolate(dimensionLessTimeValues, sweepEffValues, dimensionLessTimeValue, extrapolate);
sweepEffSamplingValues.push_back(sweepEffValue);
}
auto lorentz = a->second.m_lorenzCoefficient;
for (size_t i = 0; i < sampleCount; i++)
{
formatter.add(dateString);
formatter.add(storageCapacitySamplingValues[i]);
formatter.add(flowCapacitySamplingValues[i]);
formatter.add(sweepEffSamplingValues[i]);
formatter.add(dimensionLessTimeSamplingValues[i]);
formatter.add(lorentz);
formatter.rowCompleted();
}
}
}
formatter.tableCompleted();
return tableText;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QWidget* RimFlowCharacteristicsPlot::createViewWidget(QWidget* mainWindowParent)
{
m_flowCharPlotWidget = new RiuFlowCharacteristicsPlot(this, mainWindowParent);
return m_flowCharPlotWidget;
}