ResInsight/ApplicationCode/ReservoirDataModel/RigAccWellFlowCalculator.cpp
Jacob Støren 141ce6b54b #1381 Well Flow Plots show phase split (Oil Gas Water)
Flow rates are explained in the plots as Surface/reservoir flow rates. Unit for field is [stb]/day for all fluids
2017-05-08 16:02:42 +02:00

862 lines
35 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigAccWellFlowCalculator.h"
#include "RigSingleWellResultsData.h"
#include "RigMainGrid.h"
#include "RigActiveCellInfo.h"
#include "RigFlowDiagResults.h"
#include "RigSimulationWellCoordsAndMD.h"
//==================================================================================================
///
///
//==================================================================================================
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigEclCellIndexCalculator::resultCellIndex(size_t gridIndex, size_t gridCellIndex) const
{
const RigGridBase* grid = m_mainGrid->gridByIndex(gridIndex);
size_t reservoirCellIndex = grid->reservoirCellIndex(gridCellIndex);
return m_activeCellInfo->cellResultIndex(reservoirCellIndex);
}
//==================================================================================================
///
///
//==================================================================================================
#define USE_WELL_PHASE_RATES
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigAccWellFlowCalculator::RigAccWellFlowCalculator(const std::vector< std::vector <cvf::Vec3d> >& pipeBranchesCLCoords,
const std::vector< std::vector <RigWellResultPoint> >& pipeBranchesCellIds,
const std::map<QString, const std::vector<double>* >& tracerCellFractionValues,
const RigEclCellIndexCalculator& cellIndexCalculator,
double smallContribThreshold,
bool isProducer)
: m_pipeBranchesCLCoords(pipeBranchesCLCoords),
m_pipeBranchesCellIds(pipeBranchesCellIds),
m_tracerCellFractionValues(&tracerCellFractionValues),
m_cellIndexCalculator(cellIndexCalculator),
m_smallContributionsThreshold(smallContribThreshold),
m_isProducer(isProducer)
{
m_connectionFlowPrBranch.resize(m_pipeBranchesCellIds.size());
m_pseudoLengthFlowPrBranch.resize(m_pipeBranchesCellIds.size());
for ( const auto& it: (*m_tracerCellFractionValues) ) m_tracerNames.push_back(it.first);
m_tracerNames.push_back(RIG_RESERVOIR_TRACER_NAME);
calculateAccumulatedFlowPrConnection(0, 1);
calculateFlowPrPseudoLength(0, 0.0);
sortTracers();
groupSmallContributions();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigAccWellFlowCalculator::RigAccWellFlowCalculator(const std::vector< std::vector <cvf::Vec3d> >& pipeBranchesCLCoords,
const std::vector< std::vector <RigWellResultPoint> >& pipeBranchesCellIds,
double smallContribThreshold)
: m_pipeBranchesCLCoords(pipeBranchesCLCoords),
m_pipeBranchesCellIds(pipeBranchesCellIds),
m_tracerCellFractionValues(nullptr),
m_cellIndexCalculator(RigEclCellIndexCalculator(nullptr, nullptr)),
m_smallContributionsThreshold(smallContribThreshold),
m_isProducer(true)
{
m_connectionFlowPrBranch.resize(m_pipeBranchesCellIds.size());
m_pseudoLengthFlowPrBranch.resize(m_pipeBranchesCellIds.size());
#ifdef USE_WELL_PHASE_RATES
m_tracerNames.push_back(RIG_FLOW_OIL_NAME);
m_tracerNames.push_back(RIG_FLOW_GAS_NAME);
m_tracerNames.push_back(RIG_FLOW_WATER_NAME);
#else
m_tracerNames.push_back(RIG_FLOW_TOTAL_NAME);
#endif
calculateAccumulatedFlowPrConnection(0, 1);
calculateFlowPrPseudoLength(0, 0.0);
#ifdef USE_WELL_PHASE_RATES
sortTracers();
#endif
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::connectionNumbersFromTop(size_t branchIdx) const
{
return m_connectionFlowPrBranch[branchIdx].depthValuesFromTop;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::accumulatedTracerFlowPrConnection(const QString& tracerName, size_t branchIdx) const
{
auto flowPrTracerIt = m_connectionFlowPrBranch[branchIdx].accFlowPrTracer.find(tracerName);
if ( flowPrTracerIt != m_connectionFlowPrBranch[branchIdx].accFlowPrTracer.end())
{
return flowPrTracerIt->second;
}
else
{
CVF_ASSERT(false);
static std::vector<double> dummy;
return dummy;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::tracerFlowPrConnection(const QString& tracerName, size_t branchIdx) const
{
auto flowPrTracerIt = m_connectionFlowPrBranch[branchIdx].flowPrTracer.find(tracerName);
if ( flowPrTracerIt != m_connectionFlowPrBranch[branchIdx].flowPrTracer.end())
{
return flowPrTracerIt->second;
}
else
{
CVF_ASSERT(false);
static std::vector<double> dummy;
return dummy;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::pseudoLengthFromTop(size_t branchIdx) const
{
return m_pseudoLengthFlowPrBranch[branchIdx].depthValuesFromTop;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::trueVerticalDepth(size_t branchIdx) const
{
return m_pseudoLengthFlowPrBranch[branchIdx].trueVerticalDepth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::accumulatedTracerFlowPrPseudoLength(const QString& tracerName, size_t branchIdx) const
{
auto flowPrTracerIt = m_pseudoLengthFlowPrBranch[branchIdx].accFlowPrTracer.find(tracerName);
if ( flowPrTracerIt != m_pseudoLengthFlowPrBranch[branchIdx].accFlowPrTracer.end())
{
return flowPrTracerIt->second;
}
else
{
CVF_ASSERT(false);
static std::vector<double> dummy;
return dummy;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigAccWellFlowCalculator::tracerFlowPrPseudoLength(const QString& tracerName, size_t branchIdx) const
{
auto flowPrTracerIt = m_pseudoLengthFlowPrBranch[branchIdx].flowPrTracer.find(tracerName);
if ( flowPrTracerIt != m_pseudoLengthFlowPrBranch[branchIdx].flowPrTracer.end())
{
return flowPrTracerIt->second;
}
else
{
CVF_ASSERT(false);
static std::vector<double> dummy;
return dummy;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<QString, double> > RigAccWellFlowCalculator::totalWellFlowPrTracer() const
{
std::vector<QString> tracerNames = this->tracerNames();
std::vector<std::pair<QString, double> > tracerWithValues;
for (const QString& tracerName: tracerNames)
{
const std::vector<double>& accFlow = this->accumulatedTracerFlowPrConnection(tracerName, 0);
tracerWithValues.push_back(std::make_pair(tracerName, accFlow.back()));
}
return tracerWithValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<QString, double> > RigAccWellFlowCalculator::totalTracerFractions() const
{
std::vector<std::pair<QString, double> > totalFlows = totalWellFlowPrTracer();
float sumTracerFlows = 0.0f;
for ( const auto& tracerVal : totalFlows)
{
sumTracerFlows += tracerVal.second;
}
if (sumTracerFlows == 0.0) totalFlows.clear();
for (auto& tracerPair : totalFlows)
{
tracerPair.second = tracerPair.second/sumTracerFlows;
}
return totalFlows;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigAccWellFlowCalculator::isWellFlowConsistent() const
{
bool isConsistent = true;
for (const std::vector <RigWellResultPoint> & branch : m_pipeBranchesCellIds)
{
for (const RigWellResultPoint& wrp : branch)
{
isConsistent = isFlowRateConsistent(wrp.flowRate());
if (!isConsistent) break;
}
if (!isConsistent) break;
}
return isConsistent;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigAccWellFlowCalculator::calculateAccumulatedFractions(const std::vector<double>& accumulatedFlowPrTracer ) const
{
double totalFlow = 0.0;
for ( double tracerFlow: accumulatedFlowPrTracer)
{
totalFlow += tracerFlow;
}
std::vector<double> flowFractionsPrTracer(accumulatedFlowPrTracer.size(), 0.0);
if (totalFlow == 0.0 || !isFlowRateConsistent(totalFlow)) // If we have no accumulated flow, we set all the flow associated to the last tracer, which is the reservoir
{
flowFractionsPrTracer.back() = 1.0;
return flowFractionsPrTracer;
}
for ( size_t tIdx = 0; tIdx < accumulatedFlowPrTracer.size(); ++tIdx)
{
double tracerFlow = accumulatedFlowPrTracer[tIdx];
flowFractionsPrTracer[tIdx] = tracerFlow / totalFlow;
}
return flowFractionsPrTracer;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigAccWellFlowCalculator::isConnectionFlowConsistent(const RigWellResultPoint &wellCell) const
{
if (!m_tracerCellFractionValues) return true; // No flow diagnostics.
return isFlowRateConsistent (wellCell.flowRate());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigAccWellFlowCalculator::isFlowRateConsistent(double flowRate) const
{
if (!m_tracerCellFractionValues) return true; // No flow diagnostics.
return (flowRate >= 0.0 && m_isProducer) || (flowRate <= 0.0 && !m_isProducer);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::calculateAccumulatedFlowPrConnection(size_t branchIdx, size_t startConnectionNumberFromTop)
{
const std::vector<RigWellResultPoint>& branchCells = m_pipeBranchesCellIds[branchIdx];
std::vector<size_t> resPointUniqueIndexFromBottom = wrpToUniqueWrpIndexFromBottom(branchCells);
size_t prevConnIndx = -1;
int clSegIdx = static_cast<int>(branchCells.size()) - 1;
std::vector<double> accFlowPrTracer(m_tracerNames.size(), 0.0);
while ( clSegIdx >= 0 )
{
// Skip point if referring to the same cell as the previous centerline segment did
{
if ( resPointUniqueIndexFromBottom[clSegIdx] == prevConnIndx )
{
--clSegIdx;
continue;
}
prevConnIndx = resPointUniqueIndexFromBottom[clSegIdx];
}
// Accumulate the connection-cell's fraction flows
const RigWellResultPoint& wellCell = branchCells[clSegIdx];
std::vector<double> flowPrTracer = calculateWellCellFlowPrTracer(wellCell, accFlowPrTracer);
addDownStreamBranchFlow(&accFlowPrTracer, flowPrTracer);
if (!isConnectionFlowConsistent(wellCell))
{
// Associate all the flow with the reservoir tracer for inconsistent flow direction
flowPrTracer = std::vector<double> (flowPrTracer.size(), 0.0 );
flowPrTracer.back() = wellCell.flowRate();
}
// Add the total accumulated (fraction) flows from any branches connected to this cell
size_t connNumFromTop = connectionIndexFromTop(resPointUniqueIndexFromBottom, clSegIdx) + startConnectionNumberFromTop;
std::vector<size_t> downStreamBranchIndices = findDownStreamBranchIdxs(branchCells[clSegIdx]);
for ( size_t dsBidx : downStreamBranchIndices )
{
BranchFlow &downStreamBranchFlow = m_connectionFlowPrBranch[dsBidx];
if ( dsBidx != branchIdx && downStreamBranchFlow.depthValuesFromTop.size() == 0 ) // Not this branch or already calculated
{
calculateAccumulatedFlowPrConnection(dsBidx, connNumFromTop);
std::vector<double> accBranchFlowPrTracer = accumulatedDsBranchFlowPrTracer(downStreamBranchFlow);
addDownStreamBranchFlow(&accFlowPrTracer, accBranchFlowPrTracer);
if (m_pipeBranchesCellIds[dsBidx].size() <= 3)
{
// Short branch. Will not be visible. Show branch flow as addition to this connections direct flow
addDownStreamBranchFlow(&flowPrTracer, accBranchFlowPrTracer);
}
}
}
// Push back the accumulated result into the storage
BranchFlow& branchFlow = m_connectionFlowPrBranch[branchIdx];
storeFlowOnDepth(&branchFlow, connNumFromTop, accFlowPrTracer, flowPrTracer);
--clSegIdx;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::calculateFlowPrPseudoLength(size_t branchIdx, double startPseudoLengthFromTop)
{
const std::vector<RigWellResultPoint>& branchCells = m_pipeBranchesCellIds[branchIdx];
const std::vector <cvf::Vec3d>& branchClPoints = m_pipeBranchesCLCoords[branchIdx];
RigSimulationWellCoordsAndMD mdCalculator(branchClPoints);
int clSegIdx = static_cast<int>(branchCells.size()) - 1;
std::vector<double> accFlowPrTracer(m_tracerNames.size(), 0.0);
BranchFlow& branchFlow = m_pseudoLengthFlowPrBranch[branchIdx];
RigWellResultPoint previousResultPoint;
while ( clSegIdx >= 0 )
{
int cellBottomPointIndex = -1;
int cellUpperPointIndex = -1;
int currentSegmentIndex = -1;
// Find the complete cell span
{
cellBottomPointIndex = clSegIdx + 1;
previousResultPoint = branchCells[clSegIdx];
--clSegIdx;
while ( clSegIdx >= 0 && previousResultPoint.isEqual(branchCells[clSegIdx]) ) { --clSegIdx; }
cellUpperPointIndex = clSegIdx + 1;
currentSegmentIndex = cellUpperPointIndex;
}
const RigWellResultPoint& wellCell = branchCells[currentSegmentIndex];
std::vector<double> flowPrTracerToAccumulate = calculateWellCellFlowPrTracer( wellCell, accFlowPrTracer);
double pseudoLengthFromTop_lower = mdCalculator.measuredDepths()[cellBottomPointIndex] + startPseudoLengthFromTop;
double tvd_lower = -mdCalculator.wellPathPoints()[cellBottomPointIndex][2];
// Push back the new start-of-cell flow, with the previously accumulated result into the storage
std::vector<double> flowPrTracer;
if (!isConnectionFlowConsistent(wellCell))
{
// Associate all the flow with the reservoir tracer for inconsistent flow direction
flowPrTracer = std::vector<double> (flowPrTracerToAccumulate.size(), 0.0 );
flowPrTracer.back() = wellCell.flowRate();
}
else
{
flowPrTracer = flowPrTracerToAccumulate;
}
storeFlowOnDepthWTvd(&branchFlow, pseudoLengthFromTop_lower, tvd_lower, accFlowPrTracer, flowPrTracer);
// Accumulate the connection-cell's fraction flows
addDownStreamBranchFlow(&accFlowPrTracer, flowPrTracerToAccumulate);
double pseudoLengthFromTop_upper = mdCalculator.measuredDepths()[cellUpperPointIndex] + startPseudoLengthFromTop;
double tvd_upper = -mdCalculator.wellPathPoints()[cellUpperPointIndex][2];
// Push back the accumulated result into the storage
storeFlowOnDepthWTvd(&branchFlow, pseudoLengthFromTop_upper, tvd_upper, accFlowPrTracer, flowPrTracer);
// Add the total accumulated (fraction) flows from any branches connected to this cell
std::vector<size_t> downStreamBranchIndices = findDownStreamBranchIdxs(branchCells[cellUpperPointIndex]);
for ( size_t dsBidx : downStreamBranchIndices )
{
BranchFlow &downStreamBranchFlow = m_pseudoLengthFlowPrBranch[dsBidx];
if ( dsBidx != branchIdx && downStreamBranchFlow.depthValuesFromTop.size() == 0 ) // Not this branch or already calculated
{
calculateFlowPrPseudoLength(dsBidx, pseudoLengthFromTop_upper);
std::vector<double> accBranchFlowPrTracer = accumulatedDsBranchFlowPrTracer(downStreamBranchFlow);
addDownStreamBranchFlow(&accFlowPrTracer, accBranchFlowPrTracer);
if (m_pipeBranchesCellIds[dsBidx].size() <= 3)
{
// Short branch. Will not be visible. Show branch flow as addition to this connections direct flow
addDownStreamBranchFlow(&flowPrTracer, accBranchFlowPrTracer);
}
}
}
// Push back the accumulated result after adding the branch result into the storage
if (downStreamBranchIndices.size()) storeFlowOnDepthWTvd(&branchFlow, pseudoLengthFromTop_upper, tvd_upper, accFlowPrTracer, flowPrTracer);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::addDownStreamBranchFlow(std::vector<double> *accFlowPrTracer,
const std::vector<double>& accBranchFlowPrTracer) const
{
double totalThisBranchFlow = 0.0;
for ( double tracerFlow: *accFlowPrTracer)
{
totalThisBranchFlow += tracerFlow;
}
double totalDsBranchFlow = 0.0;
for ( double tracerFlow: accBranchFlowPrTracer)
{
totalDsBranchFlow += tracerFlow;
}
bool isAccumulationConsistent = isFlowRateConsistent(totalThisBranchFlow); // If inconsistent, is it always only the Reservoir tracer that has the flow ?
bool isBranchConsistent = isFlowRateConsistent(totalDsBranchFlow);
if (isAccumulationConsistent == isBranchConsistent)
{
for ( size_t tracerIdx = 0; tracerIdx < (*accFlowPrTracer).size() ; ++tracerIdx )
{
(*accFlowPrTracer)[tracerIdx] += accBranchFlowPrTracer[tracerIdx];
}
return;
}
double totalAccFlow = totalThisBranchFlow + totalDsBranchFlow;
if (!isFlowRateConsistent(totalAccFlow))
{
// Reset the accumulated values, as everything must be moved to the "Reservoir" tracer.
for (double& val : (*accFlowPrTracer) ) val = 0.0;
// Put all flow into the Reservoir tracer
accFlowPrTracer->back() = totalThisBranchFlow + totalDsBranchFlow;
return;
}
// We will end up with a consistent accumulated flow, and need to keep the accumulated distribution in this branch
// or to use the ds branch distribution
std::vector<double> accFractionsPrTracer;
if ( !isAccumulationConsistent && isBranchConsistent )
{
accFractionsPrTracer = calculateAccumulatedFractions(accBranchFlowPrTracer);
}
else if ( isAccumulationConsistent && !isBranchConsistent )
{
accFractionsPrTracer = calculateAccumulatedFractions(*accFlowPrTracer);
}
// Set the accumulated values to the totalFlow times the tracer fraction selected.
for (size_t tIdx = 0; tIdx < accFlowPrTracer->size(); ++tIdx)
{
(*accFlowPrTracer)[tIdx] = accFractionsPrTracer[tIdx] * (totalAccFlow);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::storeFlowOnDepth(BranchFlow* branchFlow, double depthValue, const std::vector<double>& accFlowPrTracer, const std::vector<double>& flowPrTracer)
{
size_t tracerIdx = 0;
for ( const auto & tracerName: m_tracerNames )
{
branchFlow->accFlowPrTracer[tracerName].push_back(accFlowPrTracer[tracerIdx]);
branchFlow->flowPrTracer[tracerName].push_back(flowPrTracer[tracerIdx]);
tracerIdx++;
}
branchFlow->depthValuesFromTop.push_back(depthValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::storeFlowOnDepthWTvd(BranchFlow *branchFlow, double depthValue, double trueVerticalDepth, const std::vector<double>& accFlowPrTracer, const std::vector<double>& flowPrTracer)
{
size_t tracerIdx = 0;
for ( const auto & tracerName: m_tracerNames )
{
branchFlow->accFlowPrTracer[tracerName].push_back(accFlowPrTracer[tracerIdx]);
branchFlow->flowPrTracer[tracerName].push_back(flowPrTracer[tracerIdx]);
tracerIdx++;
}
branchFlow->depthValuesFromTop.push_back(depthValue);
branchFlow->trueVerticalDepth.push_back(trueVerticalDepth);
}
std::vector<double> RigAccWellFlowCalculator::accumulatedDsBranchFlowPrTracer(const BranchFlow &downStreamBranchFlow) const
{
std::vector<double> accBranchFlowPrTracer(m_tracerNames.size(), 0.0);
size_t tracerIdx = 0;
for ( const auto & tracerName: m_tracerNames )
{
const auto trNameAccFlowsPair = downStreamBranchFlow.accFlowPrTracer.find(tracerName);
if ( trNameAccFlowsPair != downStreamBranchFlow.accFlowPrTracer.end())
{
accBranchFlowPrTracer[tracerIdx] = trNameAccFlowsPair->second.back();
}
tracerIdx++;
}
return accBranchFlowPrTracer;
}
//--------------------------------------------------------------------------------------------------
/// Calculate the flow pr tracer. If inconsistent flow, keep the existing fractions constant
//--------------------------------------------------------------------------------------------------
std::vector<double> RigAccWellFlowCalculator::calculateWellCellFlowPrTracer(const RigWellResultPoint& wellCell,
const std::vector<double>& currentAccumulatedFlowPrTracer) const
{
std::vector<double> flowPrTracer(m_tracerNames.size(), 0.0);
if ( !isConnectionFlowConsistent(wellCell) )
{
double flowRate = wellCell.flowRate();
flowPrTracer = calculateAccumulatedFractions(currentAccumulatedFlowPrTracer);
for (double & accFraction: flowPrTracer)
{
accFraction *= flowRate;
}
return flowPrTracer;
}
if ( m_tracerCellFractionValues )
{
if ( wellCell.isCell() && wellCell.m_isOpen )
{
size_t resCellIndex = m_cellIndexCalculator.resultCellIndex(wellCell.m_gridIndex,
wellCell.m_gridCellIndex);
size_t tracerIdx = 0;
double totalTracerFractionInCell = 0.0;
for ( const auto & tracerFractionValsPair: (*m_tracerCellFractionValues) )
{
const std::vector<double>* fractionVals = tracerFractionValsPair.second ;
if ( fractionVals )
{
double cellTracerFraction = (*fractionVals)[resCellIndex];
if ( cellTracerFraction != HUGE_VAL && cellTracerFraction == cellTracerFraction )
{
double tracerFlow = cellTracerFraction * wellCell.flowRate();
flowPrTracer[tracerIdx] = tracerFlow;
totalTracerFractionInCell += cellTracerFraction;
}
}
tracerIdx++;
}
double reservoirFraction = 1.0 - totalTracerFractionInCell;
double reservoirTracerFlow = reservoirFraction * wellCell.flowRate();
flowPrTracer[tracerIdx] = reservoirTracerFlow;
}
}
else
{
#ifdef USE_WELL_PHASE_RATES
flowPrTracer[0] = wellCell.oilRate();
flowPrTracer[1] = wellCell.gasRate();
flowPrTracer[2] = wellCell.waterRate();
#else
flowPrTracer[0] = wellCell.flowRate();
#endif
}
return flowPrTracer;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigAccWellFlowCalculator::wrpToUniqueWrpIndexFromBottom(const std::vector<RigWellResultPoint> &branchCells) const
{
std::vector<size_t> resPointToConnectionIndexFromBottom;
resPointToConnectionIndexFromBottom.resize(branchCells.size(), -1);
size_t connIdxFromBottom = 0;
int clSegIdx = static_cast<int>(branchCells.size()) - 1;
if (clSegIdx < 0) return resPointToConnectionIndexFromBottom;
size_t prevGridIdx = branchCells[clSegIdx].m_gridIndex;
size_t prevGridCellIdx = branchCells[clSegIdx].m_gridCellIndex;
int prevErtSegId = branchCells[clSegIdx].m_ertSegmentId;
int prevErtBranchId = branchCells[clSegIdx].m_ertBranchId;
while ( clSegIdx >= 0 )
{
if ( branchCells[clSegIdx].isValid()
&& ( branchCells[clSegIdx].m_gridIndex != prevGridIdx
|| branchCells[clSegIdx].m_gridCellIndex != prevGridCellIdx
|| branchCells[clSegIdx].m_ertSegmentId != prevErtSegId
|| branchCells[clSegIdx].m_ertBranchId != prevErtBranchId) )
{
++connIdxFromBottom;
prevGridIdx = branchCells[clSegIdx].m_gridIndex ;
prevGridCellIdx = branchCells[clSegIdx].m_gridCellIndex;
prevErtSegId = branchCells[clSegIdx].m_ertSegmentId;
prevErtBranchId = branchCells[clSegIdx].m_ertBranchId;
}
resPointToConnectionIndexFromBottom[clSegIdx] = connIdxFromBottom;
--clSegIdx;
}
return resPointToConnectionIndexFromBottom;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigAccWellFlowCalculator::connectionIndexFromTop(const std::vector<size_t>& resPointToConnectionIndexFromBottom, size_t clSegIdx)
{
return resPointToConnectionIndexFromBottom.front() - resPointToConnectionIndexFromBottom[clSegIdx];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigAccWellFlowCalculator::findDownStreamBranchIdxs(const RigWellResultPoint& connectionPoint) const
{
std::vector<size_t> downStreamBranchIdxs;
for ( size_t bIdx = 0; bIdx < m_pipeBranchesCellIds.size(); ++bIdx )
{
if ( m_pipeBranchesCellIds[bIdx][0].m_gridIndex == connectionPoint.m_gridIndex
&& m_pipeBranchesCellIds[bIdx][0].m_gridCellIndex == connectionPoint.m_gridCellIndex
&& m_pipeBranchesCellIds[bIdx][0].m_ertBranchId == connectionPoint.m_ertBranchId
&& m_pipeBranchesCellIds[bIdx][0].m_ertSegmentId == connectionPoint.m_ertSegmentId)
{
downStreamBranchIdxs.push_back(bIdx);
}
}
return downStreamBranchIdxs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::sortTracers()
{
std::multimap<double, QString> sortedTracers;
for (const QString& tracerName: m_tracerNames)
{
const std::vector<double>& mainBranchAccFlow = accumulatedTracerFlowPrConnection(tracerName, 0);
double totalFlow = 0.0;
if (mainBranchAccFlow.size()) totalFlow = - fabs( mainBranchAccFlow.back() ); // Based on size in reverse order (biggest to least)
sortedTracers.insert({totalFlow, tracerName});
}
m_tracerNames.clear();
for (const auto& tracerPair : sortedTracers)
{
m_tracerNames.push_back(tracerPair.second);
}
}
//--------------------------------------------------------------------------------------------------
/// Concatenate small tracers into an "Other" group
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::groupSmallContributions()
{
if ( ! (m_smallContributionsThreshold > 0.0) ) return;
// Find the tracers we need to group
std::vector<QString> tracersToGroup;
{
bool hasConsistentWellFlow = isWellFlowConsistent();
std::vector<std::pair<QString, double> > totalTracerFractions = this->totalTracerFractions();
if ( totalTracerFractions.size() < 5 ) return; // No grouping for few legend items
for ( const auto& tracerPair : totalTracerFractions )
{
if ( fabs(tracerPair.second) <= m_smallContributionsThreshold
&& (hasConsistentWellFlow || tracerPair.first != RIG_RESERVOIR_TRACER_NAME) ) // Do not group the Reservoir tracer if the well flow is inconsistent, because cross flow is shown as the reservoir fraction
{
tracersToGroup.push_back(tracerPair.first);
}
}
}
if ( tracersToGroup.size() < 2 ) return; // Must at least group two ...
// Concatenate the values for each branch, erasing the tracers being grouped, replaced with the concatenated values
for ( BranchFlow& brRes : m_connectionFlowPrBranch )
{
groupSmallTracers( &brRes.accFlowPrTracer, tracersToGroup);
groupSmallTracers( &brRes.flowPrTracer, tracersToGroup);
}
for ( BranchFlow& brRes : m_pseudoLengthFlowPrBranch )
{
groupSmallTracers( &brRes.accFlowPrTracer, tracersToGroup);
groupSmallTracers( &brRes.flowPrTracer, tracersToGroup);
}
// Remove the grouped tracer names from the tracerName list, and replace with the "Others" name
std::vector<QString> filteredTracernames;
for ( const QString& tracerName: m_tracerNames )
{
bool isDeleted = false;
for ( const QString& deletedTracerName: tracersToGroup )
{
if ( tracerName == deletedTracerName ) { isDeleted = true; break; }
}
if ( !isDeleted ) filteredTracernames.push_back(tracerName);
}
m_tracerNames.swap(filteredTracernames);
m_tracerNames.push_back(RIG_TINY_TRACER_GROUP_NAME);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigAccWellFlowCalculator::groupSmallTracers(std::map<QString, std::vector<double> >* branchFlowSet, const std::vector<QString>& tracersToGroup)
{
if ( branchFlowSet->empty() ) return;
size_t depthCount = branchFlowSet->begin()->second.size();
std::vector<double> groupedAccFlowValues(depthCount, 0.0);
for ( const QString& tracername:tracersToGroup )
{
auto it = branchFlowSet->find(tracername);
if ( it != branchFlowSet->end() )
{
const std::vector<double>& tracerVals = it->second;
for ( size_t cIdx = 0; cIdx < groupedAccFlowValues.size(); ++cIdx )
{
groupedAccFlowValues[cIdx] += tracerVals[cIdx];
}
}
branchFlowSet->erase(it);
}
(*branchFlowSet)[RIG_TINY_TRACER_GROUP_NAME] = groupedAccFlowValues;
}