ResInsight/ApplicationLibCode/ProjectDataModel/RimGeoMechContourMapProjection.cpp
jonjenssen a7775214c8
Rewrite of cell filters. Added new polyline filter and user defined filter types. (#7191)
Make 3d view picker more generic to enable picking cell filter polygon

Give cell filters a new, generic interface for updating included/excluded cells from collection

Remove old range filter collection and replace with new filter collection that supports both range filters, polyline filters and user defined filters.

Update existing range filter code for the new collection and interface

Add user defined cell filter type

Add polyline cell filter type

Implement both Z and K index depth for polyline filters
Allow interactive editing of polyline filter node positions.
Support both geomech and eclipse views
Support view linking with both eclipse and geomech views and the new filter types

Support loading old project files with range filter collections into the new collection type

Adjust to new world order.
2021-01-11 18:47:09 +01:00

666 lines
29 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimGeoMechContourMapProjection.h"
#include "RiaImageTools.h"
#include "RiaWeightedGeometricMeanCalculator.h"
#include "RiaWeightedHarmonicMeanCalculator.h"
#include "RiaWeightedMeanCalculator.h"
#include "RigCellGeometryTools.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartGrid.h"
#include "RigFemPartResultsCollection.h"
#include "RigGeoMechCaseData.h"
#include "RigHexIntersectionTools.h"
#include "RimCellFilterCollection.h"
#include "RimGeoMechCellColors.h"
#include "RimGeoMechContourMapView.h"
#include "RimGeoMechPropertyFilterCollection.h"
#include "RivFemElmVisibilityCalculator.h"
#include "cafPdmUiDoubleSliderEditor.h"
#include "cvfArray.h"
#include "cvfCellRange.h"
#include "cvfGeometryTools.h"
#include "cvfGeometryUtils.h"
#include "cvfScalarMapper.h"
#include "cvfStructGridGeometryGenerator.h"
#include "cvfVector3.h"
#include <QDebug>
#include <algorithm>
#include <array>
CAF_PDM_SOURCE_INIT( RimGeoMechContourMapProjection, "RimGeoMechContourMapProjection" );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapProjection::RimGeoMechContourMapProjection()
: m_kLayers( 0u )
{
CAF_PDM_InitObject( "RimContourMapProjection", ":/2DMapProjection16x16.png", "", "" );
CAF_PDM_InitField( &m_limitToPorePressureRegions, "LimitToPorRegion", true, "Limit to Pore Pressure regions", "", "", "" );
CAF_PDM_InitField( &m_applyPPRegionLimitVertically, "VerticalLimit", false, "Apply Limit Vertically", "", "", "" );
CAF_PDM_InitField( &m_paddingAroundPorePressureRegion,
"PaddingAroundPorRegion",
0.0,
"Horizontal Padding around PP regions",
"",
"",
"" );
m_paddingAroundPorePressureRegion.uiCapability()->setUiEditorTypeName(
caf::PdmUiDoubleSliderEditor::uiEditorTypeName() );
setName( "Map Projection" );
nameField()->uiCapability()->setUiReadOnly( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapProjection::~RimGeoMechContourMapProjection()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimGeoMechContourMapProjection::resultDescriptionText() const
{
QString resultText =
QString( "%1, %2" ).arg( resultAggregationText() ).arg( view()->cellResult()->resultFieldUiName() );
return resultText;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimRegularLegendConfig* RimGeoMechContourMapProjection::legendConfig() const
{
return view()->cellResult()->legendConfig();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateLegend()
{
RimGeoMechCellColors* cellColors = view()->cellResult();
double minVal = minValue( m_aggregatedResults );
double maxVal = maxValue( m_aggregatedResults );
std::pair<double, double> minmaxValAllTimeSteps = minmaxValuesAllTimeSteps();
legendConfig()->setAutomaticRanges( minmaxValAllTimeSteps.first, minmaxValAllTimeSteps.second, minVal, maxVal );
QString projectionLegendText = QString( "Map Projection\n%1" ).arg( m_resultAggregation().uiText() );
if ( cellColors->resultAddress().isValid() )
{
projectionLegendText += QString( "\nResult: %1" ).arg( cellColors->resultFieldUiName() );
if ( !cellColors->resultComponentUiName().isEmpty() )
{
projectionLegendText += QString( ", %1" ).arg( cellColors->resultComponentUiName() );
}
}
else
{
projectionLegendText += QString( "\nNo Result Selected" );
}
legendConfig()->setTitle( projectionLegendText );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::sampleSpacing() const
{
RimGeoMechCase* geoMechCase = this->geoMechCase();
if ( geoMechCase )
{
return m_relativeSampleSpacing * geoMechCase->characteristicCellSize();
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::UByteArray> RimGeoMechContourMapProjection::getCellVisibility() const
{
cvf::ref<cvf::UByteArray> cellGridIdxVisibility = new cvf::UByteArray( m_femPart->elementCount() );
RivFemElmVisibilityCalculator::computeAllVisible( cellGridIdxVisibility.p(), m_femPart.p() );
if ( view()->cellFilterCollection()->isActive() )
{
cvf::CellRangeFilter cellRangeFilter;
view()->cellFilterCollection()->compoundCellRangeFilter( &cellRangeFilter, 0 );
RivFemElmVisibilityCalculator::computeRangeVisibility( cellGridIdxVisibility.p(), m_femPart.p(), cellRangeFilter );
}
if ( view()->propertyFilterCollection()->isActive() )
{
RivFemElmVisibilityCalculator::computePropertyVisibility( cellGridIdxVisibility.p(),
m_femPart.p(),
view()->currentTimeStep(),
cellGridIdxVisibility.p(),
view()->geoMechPropertyFilterCollection() );
}
return cellGridIdxVisibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::BoundingBox RimGeoMechContourMapProjection::calculateExpandedPorBarBBox( int timeStep ) const
{
RigFemResultAddress porBarAddr( RigFemResultPosEnum::RIG_ELEMENT_NODAL,
"POR-Bar",
view()->cellResult()->resultComponentName().toStdString() );
RigGeoMechCaseData* caseData = geoMechCase()->geoMechData();
RigFemPartResultsCollection* resultCollection = caseData->femPartResults();
const std::vector<float>& resultValues = resultCollection->resultValues( porBarAddr, 0, timeStep );
cvf::BoundingBox boundingBox;
for ( int i = 0; i < m_femPart->elementCount(); ++i )
{
size_t resValueIdx = m_femPart->elementNodeResultIdx( (int)i, 0 );
CVF_ASSERT( resValueIdx < resultValues.size() );
double scalarValue = resultValues[resValueIdx];
bool validPorValue = scalarValue != std::numeric_limits<double>::infinity();
if ( validPorValue )
{
std::array<cvf::Vec3d, 8> hexCorners;
m_femPartGrid->cellCornerVertices( i, hexCorners.data() );
for ( size_t c = 0; c < 8; ++c )
{
boundingBox.add( hexCorners[c] );
}
}
}
cvf::Vec3d boxMin = boundingBox.min();
cvf::Vec3d boxMax = boundingBox.max();
cvf::Vec3d boxExtent = boundingBox.extent();
boxMin.x() -= boxExtent.x() * 0.5 * m_paddingAroundPorePressureRegion();
boxMin.y() -= boxExtent.y() * 0.5 * m_paddingAroundPorePressureRegion();
boxMax.x() += boxExtent.x() * 0.5 * m_paddingAroundPorePressureRegion();
boxMax.y() += boxExtent.y() * 0.5 * m_paddingAroundPorePressureRegion();
return cvf::BoundingBox( boxMin, boxMax );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateGridInformation()
{
RimGeoMechCase* geoMechCase = this->geoMechCase();
m_femPart = geoMechCase->geoMechData()->femParts()->part( 0 );
m_femPartGrid = m_femPart->getOrCreateStructGrid();
m_kLayers = m_femPartGrid->cellCountK();
m_femPart->ensureIntersectionSearchTreeIsBuilt();
m_gridBoundingBox = geoMechCase->activeCellsBoundingBox();
if ( m_limitToPorePressureRegions )
{
m_expandedBoundingBox = calculateExpandedPorBarBBox( view()->currentTimeStep() );
}
else
{
m_expandedBoundingBox = m_gridBoundingBox;
}
cvf::Vec3d minExpandedPoint = m_expandedBoundingBox.min() - cvf::Vec3d( gridEdgeOffset(), gridEdgeOffset(), 0.0 );
cvf::Vec3d maxExpandedPoint = m_expandedBoundingBox.max() + cvf::Vec3d( gridEdgeOffset(), gridEdgeOffset(), 0.0 );
if ( m_limitToPorePressureRegions && !m_applyPPRegionLimitVertically )
{
minExpandedPoint.z() = m_gridBoundingBox.min().z();
maxExpandedPoint.z() = m_gridBoundingBox.max().z();
}
m_expandedBoundingBox = cvf::BoundingBox( minExpandedPoint, maxExpandedPoint );
m_mapSize = calculateMapSize();
// Re-jig max point to be an exact multiple of cell size
cvf::Vec3d minPoint = m_expandedBoundingBox.min();
cvf::Vec3d maxPoint = m_expandedBoundingBox.max();
maxPoint.x() = minPoint.x() + m_mapSize.x() * sampleSpacing();
maxPoint.y() = minPoint.y() + m_mapSize.y() * sampleSpacing();
m_expandedBoundingBox = cvf::BoundingBox( minPoint, maxPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<bool> RimGeoMechContourMapProjection::getMapCellVisibility()
{
cvf::Vec2ui nCellsIJ = numberOfElementsIJ();
std::vector<std::vector<unsigned int>> distanceImage( nCellsIJ.x(), std::vector<unsigned int>( nCellsIJ.y(), 0u ) );
std::vector<bool> mapCellVisibility;
RigFemResultAddress resAddr = view()->cellResult()->resultAddress();
if ( m_limitToPorePressureRegions )
{
resAddr = RigFemResultAddress( RigFemResultPosEnum::RIG_ELEMENT_NODAL, "POR-Bar", "" );
}
std::vector<double> cellResults = generateResultsFromAddress( resAddr, mapCellVisibility, view()->currentTimeStep() );
mapCellVisibility.resize( numberOfCells(), true );
CVF_ASSERT( mapCellVisibility.size() == cellResults.size() );
{
cvf::BoundingBox validResBoundingBox;
for ( size_t cellIndex = 0; cellIndex < cellResults.size(); ++cellIndex )
{
cvf::Vec2ui ij = ijFromCellIndex( cellIndex );
if ( cellResults[cellIndex] != std::numeric_limits<double>::infinity() )
{
distanceImage[ij.x()][ij.y()] = 1u;
validResBoundingBox.add( cvf::Vec3d( cellCenterPosition( ij.x(), ij.y() ), 0.0 ) );
}
else
{
mapCellVisibility[cellIndex] = false;
}
}
if ( m_limitToPorePressureRegions && m_paddingAroundPorePressureRegion > 0.0 )
{
RiaImageTools::distanceTransform2d( distanceImage );
cvf::Vec3d porExtent = validResBoundingBox.extent();
double radius = std::max( porExtent.x(), porExtent.y() ) * 0.25;
double expansion = m_paddingAroundPorePressureRegion * radius;
size_t cellPadding = std::ceil( expansion / sampleSpacing() );
for ( size_t cellIndex = 0; cellIndex < cellResults.size(); ++cellIndex )
{
if ( !mapCellVisibility[cellIndex] )
{
cvf::Vec2ui ij = ijFromCellIndex( cellIndex );
if ( distanceImage[ij.x()][ij.y()] < cellPadding * cellPadding )
{
mapCellVisibility[cellIndex] = true;
}
}
}
}
}
return mapCellVisibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::retrieveParameterWeights()
{
return std::vector<double>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::generateResults( int timeStep )
{
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resultAddress = cellColors->resultAddress();
std::vector<double> aggregatedResults = generateResultsFromAddress( resultAddress, m_mapCellVisibility, timeStep );
return aggregatedResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::generateResultsFromAddress( RigFemResultAddress resultAddress,
const std::vector<bool>& mapCellVisibility,
int timeStep )
{
RigGeoMechCaseData* caseData = geoMechCase()->geoMechData();
RigFemPartResultsCollection* resultCollection = caseData->femPartResults();
size_t nCells = numberOfCells();
std::vector<double> aggregatedResults = std::vector<double>( nCells, std::numeric_limits<double>::infinity() );
bool wasInvalid = false;
if ( !resultAddress.isValid() )
{
wasInvalid = true;
resultAddress = RigFemResultAddress( RigFemResultPosEnum::RIG_ELEMENT_NODAL, "POR-Bar", "" );
}
if ( resultAddress.fieldName == "PP" )
{
resultAddress.fieldName = "POR-Bar"; // More likely to be in memory than POR
}
if ( resultAddress.fieldName == "POR-Bar" )
{
resultAddress.resultPosType = RIG_ELEMENT_NODAL;
}
else if ( resultAddress.resultPosType == RIG_FORMATION_NAMES )
{
resultAddress.resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
}
std::vector<float> resultValuesF = resultCollection->resultValues( resultAddress, 0, timeStep );
if ( resultValuesF.empty() ) return aggregatedResults;
std::vector<double> resultValues = gridCellValues( resultAddress, resultValuesF );
if ( wasInvalid )
{
// For invalid result addresses we just use the POR-Bar result to get the reservoir region
// And display a dummy 0-result in the region.
for ( double& value : resultValues )
{
if ( value != std::numeric_limits<double>::infinity() )
{
value = 0.0;
}
}
}
#pragma omp parallel for
for ( int index = 0; index < static_cast<int>( nCells ); ++index )
{
if ( mapCellVisibility.empty() || mapCellVisibility[index] )
{
cvf::Vec2ui ij = ijFromCellIndex( index );
aggregatedResults[index] = calculateValueInMapCell( ij.x(), ij.y(), resultValues );
}
}
return aggregatedResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimGeoMechContourMapProjection::resultVariableChanged() const
{
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resAddr = cellColors->resultAddress();
return !m_currentResultAddr.isValid() || !( m_currentResultAddr == resAddr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::clearResultVariable()
{
m_currentResultAddr = RigFemResultAddress();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGridView* RimGeoMechContourMapProjection::baseView() const
{
return view();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RimGeoMechContourMapProjection::findIntersectingCells( const cvf::BoundingBox& bbox ) const
{
std::vector<size_t> allCellIndices;
m_femPart->findIntersectingCellsWithExistingSearchTree( bbox, &allCellIndices );
return allCellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimGeoMechContourMapProjection::kLayer( size_t globalCellIdx ) const
{
size_t i, j, k;
m_femPartGrid->ijkFromCellIndex( globalCellIdx, &i, &j, &k );
return k;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimGeoMechContourMapProjection::kLayers() const
{
return m_kLayers;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::calculateOverlapVolume( size_t globalCellIdx, const cvf::BoundingBox& bbox ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
m_femPartGrid->cellCornerVertices( globalCellIdx, hexCorners.data() );
cvf::BoundingBox overlapBBox;
std::array<cvf::Vec3d, 8> overlapCorners;
if ( RigCellGeometryTools::estimateHexOverlapWithBoundingBox( hexCorners, bbox, &overlapCorners, &overlapBBox ) )
{
double overlapVolume = RigCellGeometryTools::calculateCellVolume( overlapCorners );
return overlapVolume;
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::calculateRayLengthInCell( size_t globalCellIdx,
const cvf::Vec3d& highestPoint,
const cvf::Vec3d& lowestPoint ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
const std::vector<cvf::Vec3f>& nodeCoords = m_femPart->nodes().coordinates;
const int* cornerIndices = m_femPart->connectivities( globalCellIdx );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
std::vector<HexIntersectionInfo> intersections;
if ( RigHexIntersectionTools::lineHexCellIntersection( highestPoint, lowestPoint, hexCorners.data(), 0, &intersections ) )
{
double lengthInCell =
( intersections.back().m_intersectionPoint - intersections.front().m_intersectionPoint ).length();
return lengthInCell;
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::getParameterWeightForCell( size_t globalCellIdx,
const std::vector<double>& parameterWeights ) const
{
if ( parameterWeights.empty() ) return 1.0;
return parameterWeights[globalCellIdx];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::gridCellValues( RigFemResultAddress resAddr,
std::vector<float>& resultValues ) const
{
std::vector<double> gridCellValues( m_femPart->elementCount(), std::numeric_limits<double>::infinity() );
for ( size_t globalCellIdx = 0; globalCellIdx < static_cast<size_t>( m_femPart->elementCount() ); ++globalCellIdx )
{
RigElementType elmType = m_femPart->elementType( globalCellIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
if ( resAddr.resultPosType == RIG_ELEMENT )
{
gridCellValues[globalCellIdx] = static_cast<double>( resultValues[globalCellIdx] );
}
else if ( resAddr.resultPosType == RIG_ELEMENT_NODAL )
{
RiaWeightedMeanCalculator<float> cellAverage;
for ( int i = 0; i < 8; ++i )
{
size_t gridResultValueIdx = m_femPart->resultValueIdxFromResultPosType( resAddr.resultPosType,
static_cast<int>( globalCellIdx ),
i );
cellAverage.addValueAndWeight( resultValues[gridResultValueIdx], 1.0 );
}
gridCellValues[globalCellIdx] = static_cast<double>( cellAverage.weightedMean() );
}
else
{
RiaWeightedMeanCalculator<float> cellAverage;
const int* elmNodeIndices = m_femPart->connectivities( globalCellIdx );
for ( int i = 0; i < 8; ++i )
{
cellAverage.addValueAndWeight( resultValues[elmNodeIndices[i]], 1.0 );
}
gridCellValues[globalCellIdx] = static_cast<double>( cellAverage.weightedMean() );
}
}
return gridCellValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechCase* RimGeoMechContourMapProjection::geoMechCase() const
{
RimGeoMechCase* geoMechCase = nullptr;
firstAncestorOrThisOfType( geoMechCase );
return geoMechCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapView* RimGeoMechContourMapProjection::view() const
{
RimGeoMechContourMapView* view = nullptr;
firstAncestorOrThisOfTypeAsserted( view );
return view;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateAfterResultGeneration( int timeStep )
{
m_currentResultTimestep = timeStep;
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resAddr = cellColors->resultAddress();
m_currentResultAddr = resAddr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::fieldChangedByUi( const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue )
{
RimContourMapProjection::fieldChangedByUi( changedField, oldValue, newValue );
if ( changedField == &m_limitToPorePressureRegions || changedField == &m_applyPPRegionLimitVertically ||
changedField == &m_paddingAroundPorePressureRegion )
{
clearGridMapping();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo>
RimGeoMechContourMapProjection::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions,
bool* useOptionsOnly )
{
QList<caf::PdmOptionItemInfo> options;
if ( fieldNeedingOptions == &m_resultAggregation )
{
std::vector<ResultAggregationEnum> validOptions = { RESULTS_TOP_VALUE,
RESULTS_MEAN_VALUE,
RESULTS_GEOM_VALUE,
RESULTS_HARM_VALUE,
RESULTS_MIN_VALUE,
RESULTS_MAX_VALUE,
RESULTS_SUM };
for ( ResultAggregationEnum option : validOptions )
{
options.push_back( caf::PdmOptionItemInfo( ResultAggregation::uiText( option ), option ) );
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimContourMapProjection::defineUiOrdering( uiConfigName, uiOrdering );
caf::PdmUiGroup* group = uiOrdering.addNewGroup( "Map Boundaries" );
group->add( &m_limitToPorePressureRegions );
group->add( &m_applyPPRegionLimitVertically );
group->add( &m_paddingAroundPorePressureRegion );
m_applyPPRegionLimitVertically.uiCapability()->setUiReadOnly( !m_limitToPorePressureRegions() );
m_paddingAroundPorePressureRegion.uiCapability()->setUiReadOnly( !m_limitToPorePressureRegions() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::defineEditorAttribute( const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute )
{
RimContourMapProjection::defineEditorAttribute( field, uiConfigName, attribute );
if ( field == &m_paddingAroundPorePressureRegion )
{
caf::PdmUiDoubleSliderEditorAttribute* myAttr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>( attribute );
if ( myAttr )
{
myAttr->m_minimum = 0.0;
myAttr->m_maximum = 2.0;
myAttr->m_sliderTickCount = 4;
myAttr->m_delaySliderUpdateUntilRelease = true;
}
}
}