ResInsight/ApplicationLibCode/ModelVisualization/RivWellFracturePartMgr.cpp
Magne Sjaastad 0c90f67dcc
Change API for PdmObjectHandle and PdmFieldHandle
* Refactor interface to PdmObjectHandle and PdmFieldHandle
Return objects instead of passing in structures as parameters

* Add nodiscard to several functions
* Remove redundant this->
* Rename to ptrReferencedObjectsByType
2023-05-12 21:41:34 +02:00

1195 lines
48 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaColorTables.h"
#include "RiaFractureDefines.h"
#include "RigCellGeometryTools.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigHexIntersectionTools.h"
#include "RigMainGrid.h"
#include "RigWellPath.h"
#include "RimCase.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureContainment.h"
#include "RimFractureContainmentTools.h"
#include "RimFractureTemplate.h"
#include "RimMeshFractureTemplate.h"
#include "RimRegularLegendConfig.h"
#include "RimSimWellInView.h"
#include "RimStimPlanColors.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RivFaultGeometryGenerator.h"
#include "RivObjectSourceInfo.h"
#include "RivPartPriority.h"
#include "RivPipeGeometryGenerator.h"
#include "RivWellFracturePartMgr.h"
#include "cafDisplayCoordTransform.h"
#include "cafEffectGenerator.h"
#include "cvfAssert.h"
#include "cvfDrawableGeo.h"
#include "cvfGeometryTools.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSet.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfRenderStateDepth.h"
#include "cvfScalarMapperContinuousLinear.h"
#include "cvfStructGridGeometryGenerator.h"
#include "cvfTransform.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::RivWellFracturePartMgr( RimFracture* fracture )
: m_rimFracture( fracture )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::~RivWellFracturePartMgr()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendGeometryPartsToModel( cvf::ModelBasicList* model, const RimEclipseView& eclView )
{
if ( !m_rimFracture->isChecked() || !eclView.fractureColors()->isChecked() ) return;
if ( !m_rimFracture->fractureTemplate() ) return;
m_visibleFracturePolygons.clear();
double characteristicCellSize = eclView.ownerCase()->characteristicCellSize();
cvf::Collection<cvf::Part> parts;
RimMeshFractureTemplate* stimPlanFracTemplate = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
if ( stimPlanFracTemplate )
{
createVisibleFracturePolygons( stimPlanFracTemplate, eclView );
if ( eclView.fractureColors()->stimPlanResultColorType() == RimStimPlanColors::SINGLE_ELEMENT_COLOR )
{
auto part = createStimPlanElementColorSurfacePart( eclView );
if ( part.notNull() ) parts.push_back( part.p() );
}
else
{
auto part = createStimPlanColorInterpolatedSurfacePart( eclView );
if ( part.notNull() ) parts.push_back( part.p() );
}
if ( eclView.fractureColors()->showStimPlanMesh() )
{
auto part = createStimPlanMeshPart( eclView );
if ( part.notNull() ) parts.push_back( part.p() );
}
}
else
{
auto part = createEllipseSurfacePart( eclView );
if ( part.notNull() ) parts.push_back( part.p() );
}
double distanceToCenterLine = 1.0;
{
auto wellPathColl = m_rimFracture->firstAncestorOrThisOfType<RimWellPathCollection>();
if ( wellPathColl )
{
distanceToCenterLine = wellPathColl->wellPathRadiusScaleFactor() * characteristicCellSize;
}
auto simWell = m_rimFracture->firstAncestorOrThisOfType<RimSimWellInView>();
if ( simWell )
{
distanceToCenterLine = simWell->pipeRadius();
}
}
// Make sure the distance is slightly smaller than the pipe radius to make the pipe is visible through the fracture
distanceToCenterLine *= 0.1;
if ( distanceToCenterLine < 0.03 )
{
distanceToCenterLine = 0.03;
}
auto fractureMatrix = m_rimFracture->transformMatrix();
if ( m_rimFracture->fractureTemplate() && m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH )
{
cvf::Vec3d partTranslation = distanceToCenterLine * cvf::Vec3d( fractureMatrix.col( 2 ) );
for ( auto& part : parts )
{
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation( model, part.p(), partTranslation );
}
}
else
{
for ( auto& part : parts )
{
model->addPart( part.p() );
}
}
if ( m_rimFracture->fractureTemplate() )
{
// Position the containment mask outside the fracture parts
// Always duplicate the containment mask parts
{
auto maskOfFractureAreasOutsideGrid = createMaskOfFractureOutsideGrid( eclView );
if ( maskOfFractureAreasOutsideGrid.notNull() )
{
double scaleFactor = 0.03;
if ( m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH )
{
scaleFactor = 2 * distanceToCenterLine;
}
cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d( fractureMatrix.col( 2 ) );
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation( model, maskOfFractureAreasOutsideGrid.p(), partTranslation );
}
}
if ( m_rimFracture->fractureTemplate()->fractureContainment()->isEnabled() )
{
// Position the containment mask outside the fracture parts
// Always duplicate the containment mask parts
auto containmentMask = createContainmentMaskPart( eclView );
if ( containmentMask.notNull() )
{
double scaleFactor = 0.03;
if ( m_rimFracture->fractureTemplate() &&
m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH )
{
scaleFactor = 2 * distanceToCenterLine;
}
cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d( fractureMatrix.col( 2 ) );
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation( model, containmentMask.p(), partTranslation );
}
}
}
appendFracturePerforationLengthParts( eclView, model );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const QString RivWellFracturePartMgr::resultInfoText( const RimEclipseView& activeView, cvf::Vec3d domainIntersectionPoint ) const
{
QString text;
if ( m_rimFracture.isNull() ) return text;
auto* ellipseFractureTemplate = dynamic_cast<RimEllipseFractureTemplate*>( m_rimFracture->fractureTemplate() );
auto* stimPlanTemplate = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
if ( ellipseFractureTemplate )
{
text.append( "Result value: CONDUCTIVITY " );
text.append( QString::number( ellipseFractureTemplate->conductivity() ) + "\n" );
}
else if ( stimPlanTemplate )
{
const RigFractureCell* cell = getFractureCellAtDomainCoord( domainIntersectionPoint );
if ( cell )
{
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
double resultValue = stimPlanTemplate->resultValueAtIJ( m_rimFracture->fractureGrid(),
resultNameFromColors,
resultUnitFromColors,
stimPlanTemplate->activeTimeStepIndex(),
cell->getI(),
cell->getJ() );
QString resultValueText = QString( "%1" ).arg( resultValue );
QString iText = QString::number( cell->getI() );
QString jText = QString::number( cell->getJ() );
RimStimPlanColors* stimPlanColors = activeView.fractureColors();
if ( stimPlanColors )
{
// Conductivity
text.append( "Result value: " );
QString resultName = stimPlanTemplate->mapUiResultNameToFileResultName( stimPlanColors->uiResultName() );
text.append( resultName + " " );
text.append( resultValueText + "\n" );
}
// Cell index
text.append( "Cell Index: " );
text.append( iText + ", " + jText + "\n" );
}
}
return text;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFractureCell* RivWellFracturePartMgr::getFractureCellAtDomainCoord( cvf::Vec3d domainCoord ) const
{
if ( !m_rimFracture ) return nullptr;
cvf::Mat4d toFractureXf = m_rimFracture->transformMatrix().getInverted();
cvf::Vec3d fractureCoord = domainCoord.getTransformedPoint( toFractureXf );
auto* stimPlanTempl = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
if ( !stimPlanTempl ) return nullptr;
const RigFractureGrid* grid = m_rimFracture->fractureGrid();
if ( !grid ) return nullptr;
size_t cellI = cvf::UNDEFINED_SIZE_T;
size_t cellJ = cvf::UNDEFINED_SIZE_T;
const std::vector<RigFractureCell>& cells = grid->fractureCells();
for ( size_t i = 0; i < grid->iCellCount(); i++ )
{
const RigFractureCell& cell = cells[i * grid->jCellCount()];
std::vector<cvf::Vec3d> polygon = cell.getPolygon();
double xmin = polygon[0].x();
double xmax = polygon[2].x();
if ( fractureCoord.x() >= xmin && fractureCoord.x() <= xmax )
{
cellI = cell.getI();
break;
}
}
for ( size_t j = 0; j < grid->jCellCount(); j++ )
{
const RigFractureCell& cell = cells[j];
std::vector<cvf::Vec3d> polygon = cell.getPolygon();
double ymin = polygon[2].y();
double ymax = polygon[0].y();
if ( fractureCoord.y() >= ymin && fractureCoord.y() <= ymax )
{
cellJ = cell.getJ();
break;
}
}
if ( cellI != cvf::UNDEFINED_SIZE_T && cellJ != cvf::UNDEFINED_SIZE_T )
{
return &grid->cellFromIndex( grid->getGlobalIndexFromIJ( cellI, cellJ ) );
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createEllipseSurfacePart( const RimEclipseView& activeView )
{
auto displayCoordTransform = activeView.displayCoordTransform();
if ( displayCoordTransform.isNull() ) return nullptr;
if ( m_rimFracture )
{
std::vector<cvf::uint> triangleIndices;
std::vector<cvf::Vec3f> nodeDisplayCoords;
{
std::vector<cvf::Vec3f> nodeCoords;
m_rimFracture->triangleGeometry( &nodeCoords, &triangleIndices );
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
nodeDisplayCoords = transformToFractureDisplayCoords( nodeCoords, fractureXf, *displayCoordTransform );
}
if ( triangleIndices.empty() || nodeDisplayCoords.empty() )
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles( triangleIndices, nodeDisplayCoords );
CVF_ASSERT( geo.notNull() );
cvf::ref<cvf::Part> surfacePart = new cvf::Part( 0, "FractureSurfacePart_ellipse" );
surfacePart->setDrawable( geo.p() );
surfacePart->setSourceInfo( new RivObjectSourceInfo( m_rimFracture ) );
cvf::Color4f fractureColor = cvf::Color4f( activeView.fractureColors()->defaultColor() );
RimRegularLegendConfig* legendConfig = nullptr;
if ( activeView.fractureColors() && activeView.fractureColors()->isChecked() )
{
legendConfig = activeView.fractureColors()->activeLegend();
}
if ( legendConfig && legendConfig->scalarMapper() )
{
cvf::Color3ub resultColor = cvf::Color3ub( RiaColorTables::undefinedCellColor() );
if ( activeView.fractureColors()->uiResultName() == RiaDefines::conductivityResultName() )
{
RimEllipseFractureTemplate* ellipseFractureTemplate =
dynamic_cast<RimEllipseFractureTemplate*>( m_rimFracture->fractureTemplate() );
if ( ellipseFractureTemplate )
{
double conductivity = ellipseFractureTemplate->conductivity();
resultColor = legendConfig->scalarMapper()->mapToColor( conductivity );
}
}
fractureColor.set( cvf::Color3f::fromByteColor( resultColor.r(), resultColor.g(), resultColor.b() ) );
}
caf::SurfaceEffectGenerator surfaceGen( fractureColor, caf::PO_1 );
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
surfacePart->setEffect( eff.p() );
return surfacePart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanColorInterpolatedSurfacePart( const RimEclipseView& activeView )
{
CVF_ASSERT( m_rimFracture );
RimMeshFractureTemplate* stimPlanFracTemplate = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
CVF_ASSERT( stimPlanFracTemplate );
auto displayCoordTransform = activeView.displayCoordTransform();
if ( displayCoordTransform.isNull() ) return nullptr;
// Note that the filtering and result mapping code below couples closely to the triangulation and vertex layout
// returned by triangleGeometry() If this ever changes, the entire code must be revisited
std::vector<cvf::uint> triangleIndices;
std::vector<cvf::Vec3f> nodeDisplayCoords;
{
std::vector<cvf::Vec3f> nodeCoords;
m_rimFracture->triangleGeometry( &nodeCoords, &triangleIndices );
if ( triangleIndices.empty() || nodeCoords.empty() )
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
nodeDisplayCoords = transformToFractureDisplayCoords( nodeCoords, fractureXf, *displayCoordTransform );
}
RimRegularLegendConfig* legendConfig = nullptr;
if ( activeView.fractureColors() && activeView.fractureColors()->isChecked() )
{
legendConfig = activeView.fractureColors()->activeLegend();
}
// Show selected result on the surface geometry and filter out triangles that have result values near 0
if ( legendConfig )
{
// Construct array with per node result values that correspond to the node coordinates of the triangle mesh
// Since some time steps don't have result vales, we initialize the array to well known values before populating it
std::vector<double> perNodeResultValues( nodeDisplayCoords.size(), HUGE_VAL );
{
size_t idx = 0;
const std::vector<std::vector<double>> dataToPlot =
stimPlanFracTemplate->resultValues( activeView.fractureColors()->uiResultName(),
activeView.fractureColors()->unit(),
stimPlanFracTemplate->activeTimeStepIndex() );
for ( const std::vector<double>& dataAtY : dataToPlot )
{
for ( double val : dataAtY )
{
perNodeResultValues[idx++] = val;
}
}
}
CVF_ASSERT( perNodeResultValues.size() == nodeDisplayCoords.size() );
std::vector<cvf::uint> triIndicesToInclude;
for ( size_t i = 0; i < triangleIndices.size(); i += 6 )
{
// Include all triangles where at least one of the vertices in the triangle pair has a value above threshold
bool includeThisTrianglePair = false;
for ( size_t j = 0; j < 6; j++ )
{
if ( stimPlanFracTemplate->isValidResult( perNodeResultValues[triangleIndices[i + j]] ) )
{
includeThisTrianglePair = true;
}
}
if ( includeThisTrianglePair )
{
for ( size_t j = 0; j < 6; j++ )
{
triIndicesToInclude.push_back( triangleIndices[i + j] );
}
}
}
if ( triIndicesToInclude.empty() )
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles( triIndicesToInclude, nodeDisplayCoords );
const cvf::ScalarMapper* scalarMapper = legendConfig->scalarMapper();
CVF_ASSERT( scalarMapper );
cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray( nodeDisplayCoords.size() );
textureCoords->setAll( cvf::Vec2f( 0.5f, 1.0f ) );
for ( size_t i = 0; i < perNodeResultValues.size(); i++ )
{
const double val = perNodeResultValues[i];
if ( val < HUGE_VAL && val == val )
{
textureCoords->set( i, scalarMapper->mapToTextureCoord( val ) );
}
}
geo->setTextureCoordArray( textureCoords.p() );
cvf::ref<cvf::Part> surfacePart = createScalarMapperPart( geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled() );
return surfacePart;
}
else
{
// No result is mapped, show the entire StimPlan surface with default color
return createSingleColorSurfacePart( triangleIndices, nodeDisplayCoords, activeView.fractureColors()->defaultColor() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createSingleColorSurfacePart( const std::vector<cvf::uint>& triangleIndices,
const std::vector<cvf::Vec3f>& nodeCoords,
const cvf::Color3f& color )
{
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles( triangleIndices, nodeCoords );
cvf::ref<cvf::Part> surfacePart = new cvf::Part( 0, "FractureSurfacePart_stimPlan" );
surfacePart->setDrawable( geo.p() );
surfacePart->setPriority( RivPartPriority::PartType::BaseLevel );
surfacePart->setSourceInfo( new RivObjectSourceInfo( m_rimFracture ) );
cvf::Color4f fractureColor = cvf::Color4f( color );
caf::SurfaceEffectGenerator surfaceGen( fractureColor, caf::PO_1 );
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
surfacePart->setEffect( eff.p() );
return surfacePart;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanElementColorSurfacePart( const RimEclipseView& activeView )
{
CVF_ASSERT( m_rimFracture );
RimMeshFractureTemplate* stimPlanFracTemplate = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
CVF_ASSERT( stimPlanFracTemplate );
if ( !m_rimFracture->fractureGrid() ) return nullptr;
auto displayCoordTransform = activeView.displayCoordTransform();
if ( displayCoordTransform.isNull() ) return nullptr;
std::vector<cvf::Vec3f> stimPlanMeshVertices;
cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray;
const cvf::ScalarMapper* scalarMapper = nullptr;
{
std::vector<RigFractureCell> stimPlanCells = m_rimFracture->fractureGrid()->fractureCells();
RimRegularLegendConfig* legendConfig = nullptr;
if ( activeView.fractureColors() && activeView.fractureColors()->isChecked() && activeView.fractureColors()->activeLegend() )
{
legendConfig = activeView.fractureColors()->activeLegend();
scalarMapper = legendConfig->scalarMapper();
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
std::vector<double> prCellResults = stimPlanFracTemplate->fractureGridResults( resultNameFromColors,
resultUnitFromColors,
stimPlanFracTemplate->activeTimeStepIndex() );
textureCoords->reserve( prCellResults.size() * 4 );
for ( size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx )
{
if ( stimPlanFracTemplate->isValidResult( prCellResults[cIdx] ) )
{
const RigFractureCell& stimPlanCell = stimPlanCells[cIdx];
std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
for ( const cvf::Vec3d& cellCorner : stimPlanCellPolygon )
{
stimPlanMeshVertices.push_back( static_cast<cvf::Vec3f>( cellCorner ) );
textureCoords->add( scalarMapper->mapToTextureCoord( prCellResults[cIdx] ) );
}
}
}
textureCoords->squeeze();
}
else
{
for ( const auto& stimPlanCell : stimPlanCells )
{
for ( const auto& cellCorner : stimPlanCell.getPolygon() )
{
stimPlanMeshVertices.push_back( static_cast<cvf::Vec3f>( cellCorner ) );
}
}
}
}
if ( stimPlanMeshVertices.empty() )
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> nodeDisplayCoords = transformToFractureDisplayCoords( stimPlanMeshVertices, fractureXf, *displayCoordTransform );
std::vector<cvf::uint> triIndicesToInclude;
size_t cellCount = stimPlanMeshVertices.size() / 4;
for ( cvf::uint i = 0; i < cellCount; i++ )
{
triIndicesToInclude.push_back( i * 4 + 0 );
triIndicesToInclude.push_back( i * 4 + 1 );
triIndicesToInclude.push_back( i * 4 + 2 );
triIndicesToInclude.push_back( i * 4 + 0 );
triIndicesToInclude.push_back( i * 4 + 2 );
triIndicesToInclude.push_back( i * 4 + 3 );
}
// Show selected result on the surface geometry and filter out triangles that have result values near 0
if ( scalarMapper )
{
if ( triIndicesToInclude.empty() )
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles( triIndicesToInclude, nodeDisplayCoords );
geo->setTextureCoordArray( textureCoords.p() );
cvf::ref<cvf::Part> surfacePart = createScalarMapperPart( geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled() );
return surfacePart;
}
else
{
// No result is mapped, show the entire StimPlan surface with default color
return createSingleColorSurfacePart( triIndicesToInclude, nodeDisplayCoords, activeView.fractureColors()->defaultColor() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createContainmentMaskPart( const RimEclipseView& activeView )
{
std::vector<cvf::Vec3d> borderPolygonLocalCS = fractureBorderPolygon();
cvf::Mat4d frMx = m_rimFracture->transformMatrix();
cvf::BoundingBox frBBox;
std::vector<cvf::Vec3d> borderPolygonLocalCsd;
for ( const auto& pv : borderPolygonLocalCS )
{
cvf::Vec3d pvd( pv );
borderPolygonLocalCsd.push_back( pvd );
pvd.transformPoint( frMx );
frBBox.add( pvd );
}
std::vector<size_t> cellCandidates;
activeView.mainGrid()->findIntersectingCells( frBBox, &cellCandidates );
auto displCoordTrans = activeView.displayCoordTransform();
std::vector<cvf::Vec3f> maskTriangles;
auto eclipseCase = activeView.firstAncestorOrThisOfType<RimEclipseCase>();
auto reservoirCellIndicesOpenForFlow = RimFractureContainmentTools::reservoirCellIndicesOpenForFlow( eclipseCase, m_rimFracture );
for ( size_t resCellIdx : cellCandidates )
{
if ( !m_rimFracture->isEclipseCellOpenForFlow( activeView.mainGrid(), reservoirCellIndicesOpenForFlow, resCellIdx ) )
{
// Calculate Eclipse cell intersection with fracture plane
std::array<cvf::Vec3d, 8> corners;
activeView.mainGrid()->cellCornerVertices( resCellIdx, corners.data() );
std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons( corners, frMx, eclCellPolygons );
if ( !hasIntersection || eclCellPolygons.empty() ) continue;
// Transform eclCell - plane intersection onto fracture
cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
for ( std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons )
{
for ( cvf::Vec3d& v : eclCellPolygon )
{
v.transformPoint( invertedTransformMatrix );
}
}
cvf::Vec3d fractureNormal = cvf::Vec3d( frMx.col( 2 ) );
for ( const std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons )
{
// Clip Eclipse cell polygon with fracture border
std::vector<std::vector<cvf::Vec3d>> clippedPolygons =
RigCellGeometryTools::intersectionWithPolygon( eclCellPolygon, borderPolygonLocalCsd );
for ( auto& clippedPolygon : clippedPolygons )
{
for ( auto& v : clippedPolygon )
{
v.transformPoint( frMx );
}
}
// Create triangles from the clipped polygons
for ( auto& clippedPolygon : clippedPolygons )
{
cvf::EarClipTesselator tess;
tess.setNormal( fractureNormal );
cvf::Vec3dArray cvfNodes( clippedPolygon );
tess.setGlobalNodeArray( cvfNodes );
std::vector<size_t> polyIndexes;
for ( size_t idx = 0; idx < clippedPolygon.size(); ++idx )
polyIndexes.push_back( idx );
tess.setPolygonIndices( polyIndexes );
std::vector<size_t> triangleIndices;
tess.calculateTriangles( &triangleIndices );
for ( size_t idx : triangleIndices )
{
maskTriangles.push_back( cvf::Vec3f( displCoordTrans->transformToDisplayCoord( clippedPolygon[idx] ) ) );
}
}
}
}
}
if ( maskTriangles.size() >= 3 )
{
cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
maskTriangleGeo->setVertexArray( new cvf::Vec3fArray( maskTriangles ) );
cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect( cvf::PT_TRIANGLES );
primitives->setIndexCount( maskTriangles.size() );
maskTriangleGeo->addPrimitiveSet( primitives.p() );
maskTriangleGeo->computeNormals();
cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part( 0, "FractureContainmentMaskPart" );
containmentMaskPart->setDrawable( maskTriangleGeo.p() );
containmentMaskPart->setSourceInfo( new RivObjectSourceInfo( m_rimFracture ) );
cvf::Color4f maskColor = cvf::Color4f( cvf::Color3f( cvf::Color3::GRAY ) );
caf::SurfaceEffectGenerator surfaceGen( maskColor, caf::PO_NONE );
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
containmentMaskPart->setEffect( eff.p() );
return containmentMaskPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
/// Create mask for the parts outside the grid cells of the reservoir
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createMaskOfFractureOutsideGrid( const RimEclipseView& activeView )
{
cvf::Mat4d frMx = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> maskTriangles;
auto displCoordTrans = activeView.displayCoordTransform();
for ( const auto& visibleFracturePolygon : m_visibleFracturePolygons )
{
std::vector<cvf::Vec3d> borderOfFractureCellPolygonLocalCsd;
cvf::BoundingBox frBBox;
for ( const auto& pv : visibleFracturePolygon )
{
cvf::Vec3d pvd( pv );
borderOfFractureCellPolygonLocalCsd.push_back( pvd );
pvd.transformPoint( frMx );
frBBox.add( pvd );
}
std::vector<std::vector<cvf::Vec3d>> clippedPolygons;
std::vector<size_t> cellCandidates;
activeView.mainGrid()->findIntersectingCells( frBBox, &cellCandidates );
if ( cellCandidates.empty() )
{
clippedPolygons.push_back( borderOfFractureCellPolygonLocalCsd );
}
else
{
// Check if fracture polygon is fully inside the grid
bool allPointsInsideGrid = true;
for ( const auto& v : borderOfFractureCellPolygonLocalCsd )
{
auto pointInDomainCoords = v.getTransformedPoint( frMx );
bool pointInsideGrid = false;
RigMainGrid* mainGrid = activeView.mainGrid();
std::array<cvf::Vec3d, 8> corners;
for ( size_t cellIndex : cellCandidates )
{
mainGrid->cellCornerVertices( cellIndex, corners.data() );
if ( RigHexIntersectionTools::isPointInCell( pointInDomainCoords, corners.data() ) )
{
pointInsideGrid = true;
break;
}
}
if ( !pointInsideGrid )
{
allPointsInsideGrid = false;
break;
}
}
if ( !allPointsInsideGrid )
{
std::vector<std::vector<cvf::Vec3d>> allEclCellPolygons;
for ( size_t resCellIdx : cellCandidates )
{
// Calculate Eclipse cell intersection with fracture plane
std::array<cvf::Vec3d, 8> corners;
activeView.mainGrid()->cellCornerVertices( resCellIdx, corners.data() );
std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons( corners, frMx, eclCellPolygons );
if ( !hasIntersection || eclCellPolygons.empty() ) continue;
// Transform eclCell - plane intersection onto fracture
cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
for ( std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons )
{
for ( cvf::Vec3d& v : eclCellPolygon )
{
v.transformPoint( invertedTransformMatrix );
}
allEclCellPolygons.push_back( eclCellPolygon );
}
}
{
std::vector<std::vector<cvf::Vec3d>> polys =
RigCellGeometryTools::subtractPolygons( borderOfFractureCellPolygonLocalCsd, allEclCellPolygons );
for ( const auto& polygon : polys )
{
clippedPolygons.push_back( polygon );
}
}
}
}
for ( auto& clippedPolygon : clippedPolygons )
{
for ( auto& point : clippedPolygon )
{
point.transformPoint( frMx );
}
}
// Create triangles from the clipped polygons
cvf::Vec3d fractureNormal = cvf::Vec3d( frMx.col( 2 ) );
for ( const auto& clippedPolygon : clippedPolygons )
{
cvf::EarClipTesselator tess;
tess.setNormal( fractureNormal );
cvf::Vec3dArray cvfNodes( clippedPolygon );
tess.setGlobalNodeArray( cvfNodes );
std::vector<size_t> polyIndexes;
for ( size_t idx = 0; idx < clippedPolygon.size(); ++idx )
polyIndexes.push_back( idx );
tess.setPolygonIndices( polyIndexes );
std::vector<size_t> triangleIndices;
tess.calculateTriangles( &triangleIndices );
for ( size_t idx : triangleIndices )
{
maskTriangles.push_back( cvf::Vec3f( displCoordTrans->transformToDisplayCoord( clippedPolygon[idx] ) ) );
}
}
}
if ( maskTriangles.size() >= 3 )
{
cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
maskTriangleGeo->setVertexArray( new cvf::Vec3fArray( maskTriangles ) );
cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect( cvf::PT_TRIANGLES );
primitives->setIndexCount( maskTriangles.size() );
maskTriangleGeo->addPrimitiveSet( primitives.p() );
maskTriangleGeo->computeNormals();
cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part( 0, "FractureContainmentMaskPart" );
containmentMaskPart->setDrawable( maskTriangleGeo.p() );
containmentMaskPart->setSourceInfo( new RivObjectSourceInfo( m_rimFracture ) );
cvf::Color4f maskColor = cvf::Color4f( cvf::Color3f( cvf::Color3::GRAY ) );
caf::SurfaceEffectGenerator surfaceGen( maskColor, caf::PO_NONE );
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
containmentMaskPart->setEffect( eff.p() );
return containmentMaskPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendFracturePerforationLengthParts( const RimEclipseView& activeView, cvf::ModelBasicList* model )
{
if ( !m_rimFracture->isChecked() ) return;
if ( !m_rimFracture->fractureTemplate() ) return;
if ( m_rimFracture->fractureTemplate()->orientationType() != RimFractureTemplate::ALONG_WELL_PATH ) return;
auto displayCoordTransform = activeView.displayCoordTransform();
if ( displayCoordTransform.isNull() ) return;
double characteristicCellSize = activeView.ownerCase()->characteristicCellSize();
double wellPathRadius = 1.0;
{
auto rimWellPath = m_rimFracture->firstAncestorOrThisOfType<RimWellPath>();
if ( rimWellPath )
{
wellPathRadius = rimWellPath->wellPathRadius( characteristicCellSize );
}
}
{
auto simWell = m_rimFracture->firstAncestorOrThisOfType<RimSimWellInView>();
if ( simWell )
{
wellPathRadius = simWell->pipeRadius();
}
}
std::vector<cvf::Vec3d> displayCoords =
displayCoordTransform->transformToDisplayCoords( m_rimFracture->perforationLengthCenterLineCoords() );
if ( !displayCoords.empty() )
{
cvf::ref<RivObjectSourceInfo> objectSourceInfo = new RivObjectSourceInfo( m_rimFracture );
double perforationRadius = wellPathRadius * 1.2;
cvf::Collection<cvf::Part> parts;
RivPipeGeometryGenerator::cylinderWithCenterLineParts( &parts,
displayCoords,
RiaColorTables::wellPathComponentColors()[RiaDefines::WellPathComponentType::PERFORATION_INTERVAL],
perforationRadius );
for ( auto part : parts )
{
part->setSourceInfo( objectSourceInfo.p() );
model->addPart( part.p() );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanMeshPart( const RimEclipseView& activeView )
{
if ( !m_rimFracture->fractureTemplate() ) return nullptr;
RimMeshFractureTemplate* stimPlanFracTemplate = dynamic_cast<RimMeshFractureTemplate*>( m_rimFracture->fractureTemplate() );
if ( !stimPlanFracTemplate ) return nullptr;
cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = createStimPlanMeshDrawable( stimPlanFracTemplate, activeView );
if ( stimPlanMeshGeo.notNull() )
{
cvf::ref<cvf::Part> stimPlanMeshPart = new cvf::Part( 0, "StimPlanMesh" );
stimPlanMeshPart->setDrawable( stimPlanMeshGeo.p() );
stimPlanMeshPart->updateBoundingBox();
stimPlanMeshPart->setPriority( RivPartPriority::PartType::TransparentMeshLines );
caf::MeshEffectGenerator lineEffGen( cvf::Color3::BLACK );
lineEffGen.setLineWidth( 1.0f );
cvf::ref<cvf::Effect> eff = lineEffGen.generateCachedEffect();
stimPlanMeshPart->setEffect( eff.p() );
return stimPlanMeshPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::createVisibleFracturePolygons( RimMeshFractureTemplate* stimPlanFracTemplate, const RimEclipseView& activeView )
{
if ( !m_rimFracture->fractureGrid() ) return;
std::vector<RigFractureCell> stimPlanCells = m_rimFracture->fractureGrid()->fractureCells();
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
std::vector<double> prCellResults =
stimPlanFracTemplate->fractureGridResults( resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex() );
m_visibleFracturePolygons.clear();
for ( size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx )
{
if ( stimPlanFracTemplate->isValidResult( prCellResults[cIdx] ) )
{
const RigFractureCell& stimPlanCell = stimPlanCells[cIdx];
std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
m_visibleFracturePolygons.push_back( stimPlanCellPolygon );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::createStimPlanMeshDrawable( RimMeshFractureTemplate* stimPlanFracTemplate,
const RimEclipseView& activeView )
{
if ( !m_rimFracture->fractureGrid() ) return nullptr;
auto displayCoordTransform = activeView.displayCoordTransform();
if ( displayCoordTransform.isNull() ) return nullptr;
std::vector<RigFractureCell> stimPlanCells = m_rimFracture->fractureGrid()->fractureCells();
std::vector<cvf::Vec3f> stimPlanMeshVertices;
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
std::vector<double> prCellResults =
stimPlanFracTemplate->fractureGridResults( resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex() );
for ( size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx )
{
if ( stimPlanFracTemplate->isValidResult( prCellResults[cIdx] ) )
{
const RigFractureCell& stimPlanCell = stimPlanCells[cIdx];
std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
for ( const cvf::Vec3d& cellCorner : stimPlanCellPolygon )
{
stimPlanMeshVertices.push_back( static_cast<cvf::Vec3f>( cellCorner ) );
}
}
}
if ( stimPlanMeshVertices.empty() )
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> stimPlanMeshVerticesDisplayCoords =
transformToFractureDisplayCoords( stimPlanMeshVertices, fractureXf, *displayCoordTransform );
cvf::Vec3fArray* stimPlanMeshVertexList;
stimPlanMeshVertexList = new cvf::Vec3fArray;
stimPlanMeshVertexList->assign( stimPlanMeshVerticesDisplayCoords );
cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = new cvf::DrawableGeo;
stimPlanMeshGeo->setVertexArray( stimPlanMeshVertexList );
cvf::ref<cvf::UIntArray> indices = cvf::StructGridGeometryGenerator::lineIndicesFromQuadVertexArray( stimPlanMeshVertexList );
cvf::ref<cvf::PrimitiveSetIndexedUInt> prim = new cvf::PrimitiveSetIndexedUInt( cvf::PT_LINES );
prim->setIndices( indices.p() );
stimPlanMeshGeo->addPrimitiveSet( prim.p() );
return stimPlanMeshGeo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createScalarMapperPart( cvf::DrawableGeo* drawableGeo,
const cvf::ScalarMapper* scalarMapper,
RimFracture* fracture,
bool disableLighting )
{
cvf::ref<cvf::Part> surfacePart = new cvf::Part( 0, "FractureSurfacePart_stimPlan" );
surfacePart->setDrawable( drawableGeo );
surfacePart->setPriority( RivPartPriority::PartType::BaseLevel );
surfacePart->setSourceInfo( new RivObjectSourceInfo( fracture ) );
caf::ScalarMapperEffectGenerator effGen( scalarMapper, caf::PO_1 );
effGen.disableLighting( disableLighting );
cvf::ref<cvf::Effect> eff = effGen.generateCachedEffect();
surfacePart->setEffect( eff.p() );
return surfacePart;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RivWellFracturePartMgr::fractureBorderPolygon()
{
return RigCellGeometryTools::unionOfPolygons( m_visibleFracturePolygons );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3f> RivWellFracturePartMgr::transformToFractureDisplayCoords( const std::vector<cvf::Vec3f>& coordinatesVector,
cvf::Mat4d m,
const caf::DisplayCoordTransform& displayCoordTransform )
{
std::vector<cvf::Vec3f> polygonInDisplayCoords;
polygonInDisplayCoords.reserve( coordinatesVector.size() );
for ( const cvf::Vec3f& v : coordinatesVector )
{
cvf::Vec3d vd( v );
vd.transformPoint( m );
cvf::Vec3d displayCoordsDouble = displayCoordTransform.transformToDisplayCoord( vd );
polygonInDisplayCoords.push_back( cvf::Vec3f( displayCoordsDouble ) );
}
return polygonInDisplayCoords;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::buildDrawableGeoFromTriangles( const std::vector<cvf::uint>& triangleIndices,
const std::vector<cvf::Vec3f>& nodeCoords )
{
CVF_ASSERT( triangleIndices.size() > 0 );
CVF_ASSERT( nodeCoords.size() > 0 );
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
cvf::ref<cvf::UIntArray> indices = new cvf::UIntArray( triangleIndices );
cvf::ref<cvf::Vec3fArray> vertices = new cvf::Vec3fArray( nodeCoords );
geo->setVertexArray( vertices.p() );
geo->addPrimitiveSet( new cvf::PrimitiveSetIndexedUInt( cvf::PT_TRIANGLES, indices.p() ) );
geo->computeNormals();
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Transform> RivWellFracturePartMgr::createLocalTransformFromTranslation( const cvf::Vec3d& translation )
{
cvf::Mat4d m = cvf::Mat4d::fromTranslation( translation );
cvf::ref<cvf::Transform> partTransform = new cvf::Transform;
partTransform->setLocalTransform( m );
return partTransform;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation( cvf::ModelBasicList* model, cvf::Part* part, const cvf::Vec3d& translation )
{
{
cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation( translation );
part->setTransform( partTransform.p() );
model->addPart( part );
}
{
// Create a copy of the part to be able to assign a transformation matrix representing the translation in the
// opposite direction
cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation( -translation );
auto copy = part->shallowCopy();
copy->setTransform( partTransform.p() );
model->addPart( copy.p() );
}
}