mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-09 07:33:03 -06:00
159 lines
7.1 KiB
C++
159 lines
7.1 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017- Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigTransmissibilityEquations.h"
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::wellBoreTransmissibilityComponent(double cellPerforationVectorComponent,
|
|
double permeabilityNormalDirection1,
|
|
double permeabilityNormalDirection2,
|
|
double cellSizeNormalDirection1,
|
|
double cellSizeNormalDirection2,
|
|
double wellRadius,
|
|
double skinFactor,
|
|
double cDarcyForRelevantUnit)
|
|
{
|
|
double K = cvf::Math::sqrt(permeabilityNormalDirection1 * permeabilityNormalDirection2);
|
|
|
|
double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent;
|
|
|
|
double peaceManRad = peacemanRadius(
|
|
permeabilityNormalDirection1, permeabilityNormalDirection2, cellSizeNormalDirection1, cellSizeNormalDirection2);
|
|
|
|
double denominator = log(peaceManRad / wellRadius) + skinFactor;
|
|
|
|
double trans = nominator / denominator;
|
|
return trans;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::totalConnectionFactor(double transX, double transY, double transZ)
|
|
{
|
|
return cvf::Math::sqrt(pow(transX, 2.0) + pow(transY, 2.0) + pow(transZ, 2.0));
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::totalKh(double cellPermX,
|
|
double cellPermY,
|
|
double cellPermZ,
|
|
const cvf::Vec3d& internalCellLengths,
|
|
double lateralNtg,
|
|
double ntg)
|
|
{
|
|
// Compute kh for each local grid cell axis
|
|
// Use permeability values for the two other axis
|
|
double khx = sqrt(cellPermY * cellPermZ) * internalCellLengths.x() * lateralNtg;
|
|
double khy = sqrt(cellPermX * cellPermZ) * internalCellLengths.y() * lateralNtg;
|
|
double khz = sqrt(cellPermX * cellPermY) * internalCellLengths.z() * ntg;
|
|
|
|
const double totKh = cvf::Math::sqrt(khx * khx + khy * khy + khz * khz);
|
|
|
|
return totKh;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::effectiveK(double cellPermX,
|
|
double cellPermY,
|
|
double cellPermZ,
|
|
const cvf::Vec3d& internalCellLengths,
|
|
double lateralNtg,
|
|
double ntg)
|
|
{
|
|
// Compute kh for each local grid cell axis
|
|
// Use permeability values for the two other axis
|
|
|
|
double lx = internalCellLengths.x() * lateralNtg;
|
|
double ly = internalCellLengths.y() * lateralNtg;
|
|
double lz = internalCellLengths.z() * ntg;
|
|
|
|
double khx = sqrt(cellPermY * cellPermZ) * lx;
|
|
double khy = sqrt(cellPermX * cellPermZ) * ly;
|
|
double khz = sqrt(cellPermX * cellPermY) * lz;
|
|
|
|
double nominator = khx + khy + khz;
|
|
double denominator = lx + ly + lz;
|
|
|
|
const double effK = nominator / denominator;
|
|
|
|
return effK;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::effectiveH(const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg)
|
|
{
|
|
double lx = internalCellLengths.x() * lateralNtg;
|
|
double ly = internalCellLengths.y() * lateralNtg;
|
|
double lz = internalCellLengths.z() * ntg;
|
|
|
|
double effH = cvf::Math::sqrt(lx*lx + ly*ly + lz*lz);
|
|
|
|
return effH;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::permeability(const double conductivity, const double width)
|
|
{
|
|
double threshold = 1e-7;
|
|
|
|
if (std::fabs(width) > threshold)
|
|
{
|
|
double perm = conductivity / width;
|
|
|
|
return perm;
|
|
}
|
|
else
|
|
{
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::peacemanRadius(double permeabilityNormalDirection1,
|
|
double permeabilityNormalDirection2,
|
|
double cellSizeNormalDirection1,
|
|
double cellSizeNormalDirection2)
|
|
{
|
|
double numerator = cvf::Math::sqrt(
|
|
pow(cellSizeNormalDirection2, 2.0) * pow(permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5) +
|
|
pow(cellSizeNormalDirection1, 2.0) * pow(permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5));
|
|
|
|
double denominator = pow((permeabilityNormalDirection1 / permeabilityNormalDirection2), 0.25) +
|
|
pow((permeabilityNormalDirection2 / permeabilityNormalDirection1), 0.25);
|
|
|
|
double r0 = 0.28 * numerator / denominator;
|
|
|
|
return r0;
|
|
}
|