ResInsight/ApplicationCode/ReservoirDataModel/RigTransmissibilityEquations.cpp

159 lines
7.1 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigTransmissibilityEquations.h"
#include <cmath>
#include <limits>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::wellBoreTransmissibilityComponent(double cellPerforationVectorComponent,
double permeabilityNormalDirection1,
double permeabilityNormalDirection2,
double cellSizeNormalDirection1,
double cellSizeNormalDirection2,
double wellRadius,
double skinFactor,
double cDarcyForRelevantUnit)
{
double K = cvf::Math::sqrt(permeabilityNormalDirection1 * permeabilityNormalDirection2);
double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent;
double peaceManRad = peacemanRadius(
permeabilityNormalDirection1, permeabilityNormalDirection2, cellSizeNormalDirection1, cellSizeNormalDirection2);
double denominator = log(peaceManRad / wellRadius) + skinFactor;
double trans = nominator / denominator;
return trans;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::totalConnectionFactor(double transX, double transY, double transZ)
{
return cvf::Math::sqrt(pow(transX, 2.0) + pow(transY, 2.0) + pow(transZ, 2.0));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::totalKh(double cellPermX,
double cellPermY,
double cellPermZ,
const cvf::Vec3d& internalCellLengths,
double lateralNtg,
double ntg)
{
// Compute kh for each local grid cell axis
// Use permeability values for the two other axis
double khx = sqrt(cellPermY * cellPermZ) * internalCellLengths.x() * lateralNtg;
double khy = sqrt(cellPermX * cellPermZ) * internalCellLengths.y() * lateralNtg;
double khz = sqrt(cellPermX * cellPermY) * internalCellLengths.z() * ntg;
const double totKh = cvf::Math::sqrt(khx * khx + khy * khy + khz * khz);
return totKh;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::effectiveK(double cellPermX,
double cellPermY,
double cellPermZ,
const cvf::Vec3d& internalCellLengths,
double lateralNtg,
double ntg)
{
// Compute kh for each local grid cell axis
// Use permeability values for the two other axis
double lx = internalCellLengths.x() * lateralNtg;
double ly = internalCellLengths.y() * lateralNtg;
double lz = internalCellLengths.z() * ntg;
double khx = sqrt(cellPermY * cellPermZ) * lx;
double khy = sqrt(cellPermX * cellPermZ) * ly;
double khz = sqrt(cellPermX * cellPermY) * lz;
double nominator = khx + khy + khz;
double denominator = lx + ly + lz;
const double effK = nominator / denominator;
return effK;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::effectiveH(const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg)
{
double lx = internalCellLengths.x() * lateralNtg;
double ly = internalCellLengths.y() * lateralNtg;
double lz = internalCellLengths.z() * ntg;
double effH = cvf::Math::sqrt(lx*lx + ly*ly + lz*lz);
return effH;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::permeability(const double conductivity, const double width)
{
double threshold = 1e-7;
if (std::fabs(width) > threshold)
{
double perm = conductivity / width;
return perm;
}
else
{
return 0.0;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::peacemanRadius(double permeabilityNormalDirection1,
double permeabilityNormalDirection2,
double cellSizeNormalDirection1,
double cellSizeNormalDirection2)
{
double numerator = cvf::Math::sqrt(
pow(cellSizeNormalDirection2, 2.0) * pow(permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5) +
pow(cellSizeNormalDirection1, 2.0) * pow(permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5));
double denominator = pow((permeabilityNormalDirection1 / permeabilityNormalDirection2), 0.25) +
pow((permeabilityNormalDirection2 / permeabilityNormalDirection1), 0.25);
double r0 = 0.28 * numerator / denominator;
return r0;
}