ResInsight/ApplicationCode/ReservoirDataModel/RigWellLogCurveData.cpp

414 lines
15 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellLogCurveData.h"
#include "RigCurveDataTools.h"
#include "RiaEclipseUnitTools.h"
#include "cvfMath.h"
#include "cvfAssert.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellLogCurveData::RigWellLogCurveData()
{
m_isExtractionCurve = false;
m_depthUnit = RiaDefines::UNIT_METER;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellLogCurveData::~RigWellLogCurveData()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellLogCurveData::setValuesAndMD(const std::vector<double>& xValues,
const std::vector<double>& measuredDepths,
RiaDefines::DepthUnitType depthUnit,
bool isExtractionCurve)
{
CVF_ASSERT(xValues.size() == measuredDepths.size());
m_xValues = xValues;
m_measuredDepths = measuredDepths;
m_tvDepths.clear();
m_depthUnit = depthUnit;
// Disable depth value filtering is intended to be used for
// extraction curve data
m_isExtractionCurve = isExtractionCurve;
calculateIntervalsOfContinousValidValues();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellLogCurveData::setValuesWithTVD(const std::vector<double>& xValues,
const std::vector<double>& measuredDepths,
const std::vector<double>& tvDepths,
RiaDefines::DepthUnitType depthUnit,
bool isExtractionCurve)
{
CVF_ASSERT(xValues.size() == measuredDepths.size());
m_xValues = xValues;
m_measuredDepths = measuredDepths;
m_tvDepths = tvDepths;
m_depthUnit = depthUnit;
m_isExtractionCurve = isExtractionCurve;
calculateIntervalsOfContinousValidValues();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigWellLogCurveData::xValues() const
{
return m_xValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigWellLogCurveData::measuredDepths() const
{
return m_measuredDepths;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigWellLogCurveData::tvDepths() const
{
return m_tvDepths;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::xPlotValues() const
{
std::vector<double> filteredValues;
RigCurveDataTools::getValuesByIntervals(m_xValues, m_intervalsOfContinousValidValues, &filteredValues);
return filteredValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::trueDepthPlotValues(RiaDefines::DepthUnitType destinationDepthUnit) const
{
std::vector<double> filteredValues;
if(m_tvDepths.size())
{
if(destinationDepthUnit == m_depthUnit)
{
RigCurveDataTools::getValuesByIntervals(m_tvDepths, m_intervalsOfContinousValidValues, &filteredValues);
}
else
{
std::vector<double> convertedValues = convertDepthValues(destinationDepthUnit, m_tvDepths);
RigCurveDataTools::getValuesByIntervals(convertedValues, m_intervalsOfContinousValidValues, &filteredValues);
}
}
return filteredValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::measuredDepthPlotValues(RiaDefines::DepthUnitType destinationDepthUnit) const
{
std::vector<double> filteredValues;
if(destinationDepthUnit == m_depthUnit)
{
RigCurveDataTools::getValuesByIntervals(m_measuredDepths, m_intervalsOfContinousValidValues, &filteredValues);
}
else
{
std::vector<double> convertedValues = convertDepthValues(destinationDepthUnit, m_measuredDepths);
RigCurveDataTools::getValuesByIntervals(convertedValues, m_intervalsOfContinousValidValues, &filteredValues);
}
return filteredValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<size_t, size_t>> RigWellLogCurveData::polylineStartStopIndices() const
{
return RigCurveDataTools::computePolyLineStartStopIndices(m_intervalsOfContinousValidValues);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData(double newMeasuredDepthStepSize) const
{
std::vector<double> xValues;
std::vector<double> measuredDepths;
bool isTvDepthsAvailable = false;
std::vector<double> tvDepths;
if (m_tvDepths.size() > 0) isTvDepthsAvailable = true;
if(m_measuredDepths.size() > 0)
{
double currentMd = m_measuredDepths[0];
size_t segmentStartIdx = 0;
while(segmentStartIdx < m_measuredDepths.size() - 1)
{
double segmentStartMd = m_measuredDepths[segmentStartIdx];
double segmentEndMd = m_measuredDepths[segmentStartIdx + 1];
double segmentStartX = m_xValues[segmentStartIdx];
double segmentEndX = m_xValues[segmentStartIdx +1];
double segmentStartTvd = 0.0;
double segmentEndTvd = 0.0;
if (isTvDepthsAvailable)
{
segmentStartTvd = m_tvDepths[segmentStartIdx];
segmentEndTvd = m_tvDepths[segmentStartIdx +1];
}
while(currentMd <= segmentEndMd)
{
measuredDepths.push_back(currentMd);
double endWeight = (currentMd - segmentStartMd)/ (segmentEndMd - segmentStartMd);
xValues.push_back((1.0-endWeight) * segmentStartX + endWeight*segmentEndX);
// The tvd calculation is a simplification. We should use the wellpath, as it might have a better resolution, and have a none-linear shape
// This is much simpler, and possibly accurate enough ?
if (isTvDepthsAvailable)
{
tvDepths.push_back((1.0-endWeight) * segmentStartTvd + endWeight*segmentEndTvd);
}
currentMd += newMeasuredDepthStepSize;
}
segmentStartIdx++;
}
}
cvf::ref<RigWellLogCurveData> reSampledData = new RigWellLogCurveData;
if (isTvDepthsAvailable)
{
reSampledData->setValuesWithTVD(xValues, measuredDepths, tvDepths, m_depthUnit, true);
}
else
{
reSampledData->setValuesAndMD(xValues, measuredDepths, m_depthUnit, m_isExtractionCurve);
}
return reSampledData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellLogCurveData::calculateIntervalsOfContinousValidValues()
{
std::vector<std::pair<size_t, size_t>> intervalsOfValidValues = RigCurveDataTools::calculateIntervalsOfValidValues(m_xValues, false);
m_intervalsOfContinousValidValues.clear();
if (!m_isExtractionCurve)
{
m_intervalsOfContinousValidValues = intervalsOfValidValues;
}
else
{
size_t intervalsCount = intervalsOfValidValues.size();
for (size_t intIdx = 0; intIdx < intervalsCount; intIdx++)
{
std::vector< std::pair<size_t, size_t> > depthValuesIntervals;
splitIntervalAtEmptySpace(m_measuredDepths,
intervalsOfValidValues[intIdx].first, intervalsOfValidValues[intIdx].second,
&depthValuesIntervals);
for (size_t dvintIdx = 0; dvintIdx < depthValuesIntervals.size(); dvintIdx++)
{
m_intervalsOfContinousValidValues.push_back(depthValuesIntervals[dvintIdx]);
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// Splits the start stop interval between cells that are not close enough.
//--------------------------------------------------------------------------------------------------
void RigWellLogCurveData::splitIntervalAtEmptySpace(const std::vector<double>& depthValues,
size_t startIdx,
size_t stopIdx,
std::vector< std::pair<size_t, size_t> >* intervals)
{
CVF_ASSERT(intervals);
CVF_ASSERT(startIdx < stopIdx);
if (stopIdx - startIdx == 1)
{
intervals->push_back(std::make_pair(startIdx, stopIdx));
return;
}
// !! TODO: Find a reasonable tolerance
const double depthDiffTolerance = 0.1;
// Find intervals containing depth values that should be connected:
//
// vIdx = 0 is the first point of a well, usually outside of the model. Further depth values are
// organized in pairs of depths (in and out of a cell), and sometimes the depths varies slightly. If
// the distance between a depth pair is larger than the depthDiffTolerance, the two sections will be split
// into two intervals.
//
// The first pair is located at vIdx = 1 & 2. If startIdx = 0, an offset of 1 is added to vIdx, to access
// that pair in the loop. If startIdx = 1 (can happen if the start point is inside of the model and invalid),
// the offset is not needed.
size_t intervalStartIdx = startIdx;
size_t offset = 1 - startIdx % 2;
for (size_t vIdx = startIdx + offset; vIdx < stopIdx; vIdx += 2)
{
if (cvf::Math::abs(depthValues[vIdx + 1] - depthValues[vIdx]) > depthDiffTolerance)
{
intervals->push_back(std::make_pair(intervalStartIdx, vIdx));
intervalStartIdx = vIdx + 1;
}
}
if (intervalStartIdx <= stopIdx)
{
intervals->push_back(std::make_pair(intervalStartIdx, stopIdx));
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigWellLogCurveData::calculateMDRange(double* minimumDepth, double* maximumDepth) const
{
CVF_ASSERT(minimumDepth && maximumDepth);
double minValue = HUGE_VAL;
double maxValue = -HUGE_VAL;
for (size_t vIdx = 0; vIdx < m_measuredDepths.size(); vIdx++)
{
double value = m_measuredDepths[vIdx];
if (value < minValue)
{
minValue = value;
}
if (value > maxValue)
{
maxValue = value;
}
}
if (maxValue >= minValue)
{
*minimumDepth = minValue;
*maximumDepth = maxValue;
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::DepthUnitType RigWellLogCurveData::depthUnit() const
{
return m_depthUnit;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::convertFromMeterToFeet(const std::vector<double>& valuesInMeter)
{
std::vector<double> valuesInFeet(valuesInMeter.size());
for (size_t i = 0; i < valuesInMeter.size(); i++)
{
valuesInFeet[i] = valuesInMeter[i] * RiaEclipseUnitTools::feetPerMeter();
}
return valuesInFeet;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::convertFromFeetToMeter(const std::vector<double>& valuesInFeet)
{
std::vector<double> valuesInMeter(valuesInFeet.size());
for (size_t i = 0; i < valuesInFeet.size(); i++)
{
valuesInMeter[i] = valuesInFeet[i] / RiaEclipseUnitTools::feetPerMeter();
}
return valuesInMeter;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellLogCurveData::convertDepthValues(RiaDefines::DepthUnitType destinationDepthUnit, const std::vector<double>& values) const
{
CVF_ASSERT(destinationDepthUnit != m_depthUnit);
if (destinationDepthUnit == RiaDefines::UNIT_METER)
{
return convertFromFeetToMeter(values);
}
else
{
return convertFromMeterToFeet(values);
}
}