ResInsight/ApplicationCode/FileInterface/RifFractureExportTools.cpp
2017-05-18 14:50:28 +02:00

705 lines
26 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifFractureExportTools.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RigEclipseCaseData.h"
#include "RigFracture.h"
#include "RigFractureTransCalc.h"
#include "RigStimPlanFracTemplateCell.h"
#include "RigMainGrid.h"
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RimEclipseCase.h"
#include "RimEclipseResultDefinition.h"
#include "RimEclipseView.h"
#include "RimEclipseWell.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureTemplate.h"
#include "RimSimWellFracture.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimWellPath.h"
#include "cafProgressInfo.h"
#include <QFile>
#include <QString>
#include <QTextStream>
//--------------------------------------------------------------------------------------------------
/// Constructor
//--------------------------------------------------------------------------------------------------
RifFractureExportTools::RifFractureExportTools()
{
}
//--------------------------------------------------------------------------------------------------
/// Destructor
//--------------------------------------------------------------------------------------------------
RifFractureExportTools::~RifFractureExportTools()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifFractureExportTools::exportFracturesToEclipseDataInputFile(const QString& fileName, const std::vector< RimFracture*>& fractures, RimEclipseCase* caseToApply)
{
RiaLogging::info(QString("Computing and writing COMPDAT values to file %1").arg(fileName));
const RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
if (!mainGrid) return false;
QFile file(fileName);
if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
return false;
}
caf::ProgressInfo pi(fractures.size(), QString("Writing data to file %1").arg(fileName));
RimEclipseWell* simWell = nullptr;
RimWellPath* wellPath = nullptr;
size_t progress = 0;
std::vector<size_t> ijk;
QTextStream out(&file);
out << "\n";
out << "-- Exported from ResInsight" << "\n";
RigEclipseCaseData::UnitsType caseUnit = caseToApply->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC) out << "-- Using metric unit system" << "\n";
if (caseUnit == RigEclipseCaseData::UNITS_FIELD) out << "-- Using field unit system" << "\n";
out << "\n";
//Included for debug / prototyping only
printTransmissibilityFractureToWell(fractures, out, caseToApply);
printStimPlanFractureTrans(fractures, out);
printStimPlanCellsMatrixTransContributions(fractures, caseToApply, out, wellPath, simWell, mainGrid);
printBackgroundDataHeaderLine(out);
RiaLogging::debug(QString("Writing intermediate results from COMPDAT calculation"));
std::map<RimFracture*, std::vector<RigFracturedEclipseCellExportData> > exportDataPrFracture;
for (RimFracture* fracture : fractures)
{
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
//TODO: Check that there is a fracture template available for given fracture....
std::vector<RigFracturedEclipseCellExportData> fracDataVector = transmissibilityCalculator.computeTransmissibilityFromPolygonWithInfiniteConductivityInFracture();
exportDataPrFracture[fracture] = fracDataVector;
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
printBackgroundData(out, wellPath, simWell, fracture, mainGrid, fracData);
}
}
out << "\n";
out << qSetFieldWidth(7) << "COMPDAT" << "\n" << right << qSetFieldWidth(8);
for (RimFracture* fracture : fractures)
{
RiaLogging::debug(QString("Writing COMPDAT values for fracture %1").arg(fracture->name()));
std::vector<RigFracturedEclipseCellExportData> fracDataVector = exportDataPrFracture[fracture];
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
if ( fracData.transmissibility > 0 )
{
printCOMPDATvalues(out, fracData, fracture, wellPath, simWell, mainGrid);
}
}
//TODO: If same cell is used for multiple fractures, the sum of contributions should be added to table.
progress++;
pi.setProgress(progress);
}
out << "/ \n";
RiaLogging::info(QString("Competed writing COMPDAT data to file %1").arg(fileName));
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::performStimPlanUpscalingAndPrintResults(const std::vector<RimFracture *>& fractures, RimEclipseCase* caseToApply, QTextStream &out, RimWellPath* wellPath, RimEclipseWell* simWell, const RigMainGrid* mainGrid)
{
//TODO: Get these more generally:
QString resultName = "CONDUCTIVITY";
QString resultUnit = "md-m";
size_t timeStepIndex = 0;
for (RimFracture* fracture : fractures) //For testing upscaling...
{
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
std::vector<RigFracturedEclipseCellExportData> fracDataVector;
fracDataVector = transmissibilityCalculator.computeUpscaledPropertyFromStimPlan(resultName, resultUnit, timeStepIndex);
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << "Well";
out << qSetFieldWidth(16);
out << "Fracture name ";
out << qSetFieldWidth(5);
out << "i"; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << "j"; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << "k"; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << qSetFieldWidth(10);
out << "cellIndex";
out << "condHA. ";
out << "condAH. ";
out << "\n";
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
wellPath, simWell = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " "; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << qSetFieldWidth(10);
out << fracData.reservoirCellIndex;
out << QString::number(fracData.upscaledStimPlanValueHA, 'f', 3);
out << QString::number(fracData.upscaledStimPlanValueAH, 'f', 3);
out << "\n";
}
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanCellsMatrixTransContributions(const std::vector<RimFracture *>& fractures, RimEclipseCase* caseToApply, QTextStream &out, RimWellPath* wellPath, RimEclipseWell* simWell, const RigMainGrid* mainGrid)
{
out << "StimPlan cells' matrix transmissibility and Eclipse Cell contributions \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << "Well name "; // 1. Well name
out << qSetFieldWidth(16);
out << "Fracture name ";
out << qSetFieldWidth(5);
out << "Ec i";
out << "Ec j";
out << "Ec k";
out << qSetFieldWidth(10);
out << "Ecl cell";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tm contr";
out << "\n";
for (RimFracture* fracture : fractures)
{
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition());
}
else continue;
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
double cDarcyInCorrectUnit = transmissibilityCalculator.cDarcy();
std::vector<RigStimPlanFracTemplateCell> stimPlanCells = fracTemplateStimPlan->getStimPlanCells();
for (RigStimPlanFracTemplateCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
continue;
}
RigStimPlanFractureCell fracStimPlanCellData(stimPlanCell.getI(), stimPlanCell.getJ());
RigEclipseToStimPlanCellTransmissibilityCalculator eclToStimPlanTransCalc(caseToApply,
fracture->transformMatrix(),
fracture->attachedFractureDefinition()->skinFactor,
cDarcyInCorrectUnit,
stimPlanCell);
std::vector<size_t> stimPlanContributingEclipseCells = eclToStimPlanTransCalc.globalIndeciesToContributingEclipseCells();
std::vector<double> stimPlanContributingEclipseCellTransmissibilities = eclToStimPlanTransCalc.contributingEclipseCellTransmissibilities();
for (int i = 0; i < stimPlanContributingEclipseCells.size(); i++)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
wellPath, simWell = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " "; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t ii, jj, kk;
mainGrid->ijkFromCellIndex(stimPlanContributingEclipseCells[i], &ii, &jj, &kk);
out << ii + 1;
out << jj + 1;
out << kk + 1;
out << qSetFieldWidth(10);
out << stimPlanContributingEclipseCells[i];
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(stimPlanContributingEclipseCellTransmissibilities[i], 'e', 3);
out << "\n";
}
//TODO: add RigFractureStimPlanCellData to m_StimPlanCellsFractureData i RigFracture???
}
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanFractureTrans(const std::vector<RimFracture *>& fractures, QTextStream &out)
{
out << "StimPlan cells' fracture transmissibility \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tf_hor";
out << "Tf_vert";
out << "\n";
if (fractures.size() < 1) return;
RimFracture* fracture = fractures[0];
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition());
}
else return;
std::vector<RigStimPlanFracTemplateCell> stimPlanCells = fracTemplateStimPlan->getStimPlanCells();
for (RigStimPlanFracTemplateCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
//If conductivity in stimPlanCell is 0, contributions might not be relevant...
continue;
}
double verticalTrans = RigFractureTransCalc::computeStimPlanCellTransmissibilityInFracture(stimPlanCell.getConductivtyValue(), stimPlanCell.cellSizeX(), stimPlanCell.cellSizeZ());
double horizontalTrans = RigFractureTransCalc::computeStimPlanCellTransmissibilityInFracture(stimPlanCell.getConductivtyValue(), stimPlanCell.cellSizeZ(), stimPlanCell.cellSizeX());
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(verticalTrans, 'e', 3);
out << QString::number(horizontalTrans, 'e', 3);
out << "\n";
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printCOMPDATvalues(QTextStream & out, RigFracturedEclipseCellExportData &fracData, RimFracture* fracture, RimWellPath* wellPath, RimEclipseWell* simWell, const RigMainGrid* mainGrid)
{
out << qSetFieldWidth(8);
if (fracData.transmissibility == cvf::UNDEFINED_DOUBLE || !(fracture->attachedFractureDefinition())) out << "--"; //Commenting out line in output file
wellPath, simWell = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name; // 1. Well name
out << qSetFieldWidth(5);
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 5. K location of lower connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << "2* "; // Default value for
//6. Open / Shut flag of connection
// 7. Saturation table number for connection rel perm. Default value
out << qSetFieldWidth(12);
// 8. Transmissibility
if (fracData.transmissibility != cvf::UNDEFINED_DOUBLE) out << QString::number(fracData.transmissibility, 'e', 4);
else out << "UNDEF";
out << qSetFieldWidth(4);
out << "2* "; // Default value for
// 9. Well bore diameter. Set to default
// 10. Effective Kh (perm times width)
if (fracture->attachedFractureDefinition())
{
out << fracture->attachedFractureDefinition()->skinFactor; // 11. Skin factor
}
else //If no attached fracture definition these parameters are set to UNDEF
{
out << "UNDEF";
}
out << "/";
out << " " << fracture->name(); //Fracture name as comment
out << "\n"; // Terminating entry
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundDataHeaderLine(QTextStream & out)
{
out << "-- Background data for calculation" << "\n\n";
//Write header line
out << qSetFieldWidth(4);
out << "--";
out << qSetFieldWidth(12);
out << "Well ";
out << qSetFieldWidth(16);
out << "Fracture ";
out << qSetFieldWidth(5);
out << "i";
out << "j";
out << "k";
out << qSetFieldWidth(12);
out << "Ax";
out << "Ay";
out << "Az";
out << "TotArea";
out << "skinfac";
out << "FracLen";
out << qSetFieldWidth(10);
out << "DX";
out << "DY";
out << "DZ";
out << qSetFieldWidth(12);
out << "PermX";
out << "PermY";
out << "PermZ";
out << qSetFieldWidth(8);
out << "NTG";
out << qSetFieldWidth(12);
out << "T_x";
out << "T_y";
out << "T_z";
out << qSetFieldWidth(15);
out << "Transm";
out << qSetFieldWidth(20);
out << "Status";
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundData(QTextStream & out, RimWellPath* wellPath, RimEclipseWell* simWell, RimFracture* fracture, const RigMainGrid* mainGrid, RigFracturedEclipseCellExportData &fracData)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
wellPath, simWell = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " " ; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << qSetFieldWidth(12);
//Use f for float, e for exponent float and g for best choice of these two.
out << QString::number(fracData.projectedAreas.x(), 'g', 4);
out << QString::number(fracData.projectedAreas.y(), 'g', 4);
out << QString::number(fracData.projectedAreas.z(), 'g', 4);
out << QString::number(fracData.totalArea, 'g', 4);
out << QString::number(fracData.skinFactor, 'f', 2);
out << QString::number(fracData.fractureLenght, 'g', 3);
out << qSetFieldWidth(10);
out << QString::number(fracData.cellSizes.x(), 'f', 2);
out << QString::number(fracData.cellSizes.y(), 'f', 2);
out << QString::number(fracData.cellSizes.z(), 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.permeabilities.x(), 'e', 3);
out << QString::number(fracData.permeabilities.y(), 'e', 3);
out << QString::number(fracData.permeabilities.z(), 'e', 3);
out << qSetFieldWidth(8);
out << QString::number(fracData.NTG, 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.transmissibilities.x(), 'e', 3);
out << QString::number(fracData.transmissibilities.y(), 'e', 3);
out << QString::number(fracData.transmissibilities.z(), 'e', 3);
out << qSetFieldWidth(15);
out << QString::number(fracData.transmissibility, 'e', 3);
if (!fracData.cellIsActive)
{
out << qSetFieldWidth(20);
out << " INACTIVE CELL ";
}
else if (fracData.cellIsActive && fracData.transmissibility > 0)
{
out << qSetFieldWidth(20);
out << " ACTIVE CELL ";
}
else
{
out << qSetFieldWidth(20);
out << " INVALID DATA ";
}
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printTransmissibilityFractureToWell(const std::vector<RimFracture *>& fractures, QTextStream &out, RimEclipseCase* caseToApply)
{
out << "-- Transmissibility From Fracture To Well \n";
out << qSetFieldWidth(12);
out << "Well name ";
out << qSetFieldWidth(16);
out << "Fracture name ";
out << "Inflow type ";
out << qSetFieldWidth(5);
out << " i ";
out << " j ";
out << "Tw";
out << "\n";
for (RimFracture* fracture : fractures)
{
out << qSetFieldWidth(12);
RimEclipseWell* simWell = nullptr;
RimWellPath* wellPath = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " "; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
if (fracture->attachedFractureDefinition()->orientation == RimFractureTemplate::ALONG_WELL_PATH)
{
out << "Linear inflow";
out << qSetFieldWidth(5);
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition());
}
else continue;
//TODO: Can be removed when implementation of dip angle is more general:
RimSimWellFracture* simWellFrac;
if (dynamic_cast<RimSimWellFracture*>(fracture))
{
simWellFrac = dynamic_cast<RimSimWellFracture*>(fracture);
}
else continue;
double wellDip = simWellFrac->wellDipAtFracturePosition();
double perforationLengthVert = fracture->perforationLength * cos(wellDip);
double perforationLengthHor = fracture->perforationLength * sin(wellDip);
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->getStimPlanCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
//RigStimPlanCell* stimPlanCell = fracTemplateStimPlan->getStimPlanCellAtIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second);
const RigStimPlanFracTemplateCell& stimPlanCell = fracTemplateStimPlan->stimPlanCellFromIndex(fracTemplateStimPlan->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
double linTransInStimPlanCell = transmissibilityCalculator.computeLinearTransmissibilityToWellinStimPlanCell(stimPlanCell, perforationLengthVert, perforationLengthHor);
out << qSetFieldWidth(10);
out << QString::number(linTransInStimPlanCell, 'f', 2);
out << "\n";
}
if (fracture->attachedFractureDefinition()->orientation == RimFractureTemplate::TRANSVERSE_WELL_PATH
|| fracture->attachedFractureDefinition()->orientation == RimFractureTemplate::AZIMUTH)
{
out << "Radial inflow";
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->attachedFractureDefinition());
}
else continue;
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->getStimPlanCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
//RigStimPlanCell* stimPlanCell = fracTemplateStimPlan->getStimPlanCellAtIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second);
const RigStimPlanFracTemplateCell& stimPlanCell = fracTemplateStimPlan->stimPlanCellFromIndex(fracTemplateStimPlan->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
//TODO: Error - stimPlanCell blir ikke riktig...
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
double radTransInStimPlanCell = transmissibilityCalculator.computeRadialTransmissibilityToWellinStimPlanCell(stimPlanCell);
out << qSetFieldWidth(10);
out << QString::number(radTransInStimPlanCell, 'f', 2);
out << "\n";
}
}
out << "\n";
}