ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.h
Jacob Støren f0174a02fa More file renaming:
RigEclipseCase		RigCaseData
RigReservoirCellResults	RigCaseCellResultsData
RigWellResults		RigSingleWellResultsData
RigGridCollection	RigGridManager
p4#: 21070
2013-03-22 16:58:44 +01:00

202 lines
9.1 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RimDefines.h"
#include <QDateTime>
#include <vector>
#include <cmath>
#include "RifReaderInterface.h"
class RifReaderInterface;
class RigMainGrid;
//==================================================================================================
/// Class containing the results for the complete number of active cells. Both main grid and LGR's
//==================================================================================================
class RigCaseCellResultsData : public cvf::Object
{
public:
RigCaseCellResultsData(RigMainGrid* ownerGrid);
void setMainGrid(RigMainGrid* ownerGrid);
// Max and min values of the results
void recalculateMinMax(size_t scalarResultIndex);
void minMaxCellScalarValues(size_t scalarResultIndex, double& min, double& max);
void minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max);
const std::vector<size_t>& cellScalarValuesHistogram(size_t scalarResultIndex);
void p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90);
void meanCellScalarValues(size_t scalarResultIndex, double& meanValue);
// Access meta-information about the results
size_t resultCount() const;
size_t timeStepCount(size_t scalarResultIndex) const;
size_t maxTimeStepCount(size_t* scalarResultIndex = NULL) const;
QStringList resultNames(RimDefines::ResultCatType type) const;
bool isUsingGlobalActiveIndex(size_t scalarResultIndex) const;
QDateTime timeStepDate(size_t scalarResultIndex, size_t timeStepIndex) const;
std::vector<QDateTime> timeStepDates(size_t scalarResultIndex) const;
void setTimeStepDates(size_t scalarResultIndex, const std::vector<QDateTime>& dates);
// Find or create a slot for the results
size_t findScalarResultIndex(RimDefines::ResultCatType type, const QString& resultName) const;
size_t findScalarResultIndex(const QString& resultName) const;
size_t addEmptyScalarResult(RimDefines::ResultCatType type, const QString& resultName, bool needsToBeStored);
QString makeResultNameUnique(const QString& resultNameProposal) const;
void removeResult(const QString& resultName);
void clearAllResults();
// Access the results data
const std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex) const;
std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex);
std::vector<double>& cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex);
double cellScalarResult(size_t scalarResultIndex, size_t timeStepIndex, size_t resultValueIndex);
static RifReaderInterface::PorosityModelResultType convertFromProjectModelPorosityModel(RimDefines::PorosityModelType porosityModel);
public:
class ResultInfo
{
public:
ResultInfo(RimDefines::ResultCatType resultType, bool needsToBeStored, QString resultName, size_t gridScalarResultIndex)
: m_resultType(resultType), m_needsToBeStored(needsToBeStored), m_resultName(resultName), m_gridScalarResultIndex(gridScalarResultIndex) { }
public:
RimDefines::ResultCatType m_resultType;
bool m_needsToBeStored;
QString m_resultName;
size_t m_gridScalarResultIndex;
std::vector<QDateTime> m_timeStepDates;
};
const std::vector<ResultInfo>& infoForEachResultIndex() { return m_resultInfos;}
public:
size_t addStaticScalarResult(RimDefines::ResultCatType type,
const QString& resultName,
bool needsToBeStored,
size_t resultValueCount);
private:
std::vector< std::vector< std::vector<double> > > m_cellScalarResults; ///< Scalar results on the complete reservoir for each Result index (ResultVariable) and timestep
std::vector< std::pair<double, double> > m_maxMinValues; ///< Max min values for each Result index
std::vector< std::vector<size_t> > m_histograms; ///< Histogram for each Result Index
std::vector< std::pair<double, double> > m_p10p90; ///< P10 and p90 values for each Result Index
std::vector< double > m_meanValues; ///< Mean value for each Result Index
std::vector< std::vector< std::pair<double, double> > > m_maxMinValuesPrTs; ///< Max min values for each Result index and timestep
private:
std::vector<ResultInfo> m_resultInfos;
RigMainGrid* m_ownerMainGrid;
};
class RigHistogramCalculator
{
public:
RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram)
{
CVF_ASSERT(histogram);
CVF_ASSERT(nBins > 0);
if (max == min) { nBins = 1; } // Avoid dividing on 0 range
m_histogram = histogram;
m_min = min;
m_observationCount = 0;
// Initialize bins
m_histogram->resize(nBins);
for (size_t i = 0; i < m_histogram->size(); ++i) (*m_histogram)[i] = 0;
m_range = max - min;
maxIndex = nBins-1;
}
void addData(const std::vector<double>& data)
{
CVF_ASSERT(m_histogram);
for (size_t i = 0; i < data.size(); ++i)
{
if (data[i] == HUGE_VAL)
{
continue;
}
size_t index = 0;
if (maxIndex > 0) index = (size_t)(maxIndex*(data[i] - m_min)/m_range);
if(index < m_histogram->size()) // Just clip to the max min range (-index will overflow to positive )
{
(*m_histogram)[index]++;
m_observationCount++;
}
}
}
/// Calculates the estimated percentile from the histogram.
/// the percentile is the domain value at which pVal of the observations are below it.
/// Will only consider observed values between min and max, as all other values are discarded from the histogram
double calculatePercentil(double pVal)
{
CVF_ASSERT(m_histogram);
CVF_ASSERT(m_histogram->size());
CVF_ASSERT( 0.0 <= pVal && pVal <= 1.0);
double pValObservationCount = pVal*m_observationCount;
if (pValObservationCount == 0.0) return m_min;
size_t accObsCount = 0;
double binWidth = m_range/m_histogram->size();
for (size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx)
{
size_t binObsCount = (*m_histogram)[binIdx];
accObsCount += binObsCount;
if (accObsCount >= pValObservationCount)
{
double domainValueAtEndOfBin = m_min + (binIdx+1) * binWidth;
double unusedFractionOfLastBin = (double)(accObsCount - pValObservationCount)/binObsCount;
return domainValueAtEndOfBin - unusedFractionOfLastBin*binWidth;
}
}
CVF_ASSERT(false);
return HUGE_VAL;
}
private:
size_t maxIndex;
double m_range;
double m_min;
size_t m_observationCount;
std::vector<size_t>* m_histogram;
};