ResInsight/ApplicationCode/ProjectDataModel/RimStimPlanFractureTemplate.cpp
2017-05-23 12:02:37 +02:00

1189 lines
47 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 - Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimStimPlanFractureTemplate.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RigStimPlanFractureDefinition.h"
#include "RimEclipseView.h"
#include "RimFracture.h"
#include "RimProject.h"
#include "RigStimPlanFracTemplateCell.h"
#include "RimStimPlanColors.h"
#include "RimStimPlanLegendConfig.h"
#include "RivWellFracturePartMgr.h"
#include "cafPdmObject.h"
#include "cafPdmUiDoubleSliderEditor.h"
#include "cafPdmUiFilePathEditor.h"
#include "cvfVector3.h"
#include <QFileInfo>
#include <QMessageBox>
#include <algorithm>
#include <vector>
#include <cmath>
#include "RigFractureTransCalc.h"
CAF_PDM_SOURCE_INIT(RimStimPlanFractureTemplate, "RimStimPlanFractureTemplate");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStimPlanFractureTemplate::RimStimPlanFractureTemplate(void)
{
CAF_PDM_InitObject("Fracture Template", ":/FractureTemplate16x16.png", "", "");
CAF_PDM_InitField(&m_stimPlanFileName, "StimPlanFileName", QString(""), "File Name", "", "", "");
m_stimPlanFileName.uiCapability()->setUiEditorTypeName(caf::PdmUiFilePathEditor::uiEditorTypeName());
CAF_PDM_InitField(&wellPathDepthAtFracture, "WellPathDepthAtFracture", 0.0, "Well/Fracture Intersection Depth", "", "", "");
wellPathDepthAtFracture.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleSliderEditor::uiEditorTypeName());
CAF_PDM_InitField(&parameterForPolygon, "parameterForPolyton", QString(""), "Parameter", "", "", "");
CAF_PDM_InitField(&activeTimeStepIndex, "activeTimeStepIndex", 0, "Active TimeStep Index", "", "", "");
CAF_PDM_InitField(&showStimPlanMesh, "showStimPlanMesh", true, "Show StimPlan Mesh", "", "", "");
//TODO: Is this correct way of doing this...?
wellCenterStimPlanCellIJ = std::make_pair(0, 0);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStimPlanFractureTemplate::~RimStimPlanFractureTemplate()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::fieldChangedByUi(const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue)
{
RimFractureTemplate::fieldChangedByUi(changedField, oldValue, newValue);
if (&m_stimPlanFileName == changedField)
{
updateUiTreeName();
loadDataAndUpdate();
setDefaultsBasedOnXMLfile();
}
if (&activeTimeStepIndex == changedField)
{
setupStimPlanCells();
//Changes to this parameters should change all fractures with this fracture template attached.
RimProject* proj;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
std::vector<RimFracture*> fractures;
proj->descendantsIncludingThisOfType(fractures);
for (RimFracture* fracture : fractures)
{
if (fracture->attachedFractureDefinition() == this)
{
fracture->stimPlanTimeIndexToPlot = activeTimeStepIndex;
fracture->setRecomputeGeometryFlag();
}
}
proj->createDisplayModelAndRedrawAllViews();
}
}
if (&wellPathDepthAtFracture == changedField || &parameterForPolygon == changedField || &activeTimeStepIndex == changedField || &showStimPlanMesh == changedField)
{
RimProject* proj;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
//Regenerate geometry
std::vector<RimFracture*> fractures;
proj->descendantsIncludingThisOfType(fractures);
for (RimFracture* fracture : fractures)
{
if (fracture->attachedFractureDefinition() == this)
{
fracture->setRecomputeGeometryFlag();
}
}
}
proj->createDisplayModelAndRedrawAllViews();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::updateUiTreeName()
{
this->uiCapability()->setUiName(fileNameWithOutPath());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::setFileName(const QString& fileName)
{
m_stimPlanFileName = fileName;
updateUiTreeName();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const QString& RimStimPlanFractureTemplate::fileName()
{
return m_stimPlanFileName();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimStimPlanFractureTemplate::fileNameWithOutPath()
{
QFileInfo stimplanfileFileInfo(m_stimPlanFileName());
return stimplanfileFileInfo.fileName();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::readStimPlanXMLFile(QString * errorMessage)
{
RiaLogging::info(QString("Starting to open StimPlan XML file: '%1'").arg(fileName()));
m_stimPlanFractureDefinitionData = new RigStimPlanFractureDefinition;
size_t startingNegXsValues = 0;
{
QFile dataFile(m_stimPlanFileName());
if (!dataFile.open(QFile::ReadOnly))
{
if (errorMessage) (*errorMessage) += "Could not open the File: " + (m_stimPlanFileName()) + "\n";
return;
}
QXmlStreamReader xmlStream;
xmlStream.setDevice(&dataFile);
xmlStream.readNext();
startingNegXsValues = readStimplanGridAndTimesteps(xmlStream);
if (xmlStream.hasError())
{
RiaLogging::error(QString("Failed to parse file '%1'").arg(dataFile.fileName()));
RiaLogging::error(xmlStream.errorString());
}
dataFile.close();
}
size_t numberOfDepthValues = m_stimPlanFractureDefinitionData->depths.size();
RiaLogging::debug(QString("Grid size X: %1, Y: %2").arg(QString::number(m_stimPlanFractureDefinitionData->gridXs.size()),
QString::number(numberOfDepthValues)));
size_t numberOfTimeSteps = m_stimPlanFractureDefinitionData->timeSteps.size();
RiaLogging::debug(QString("Number of time-steps: %1").arg(numberOfTimeSteps));
//Start reading from top:
QFile dataFile(m_stimPlanFileName());
if (!dataFile.open(QFile::ReadOnly))
{
if (errorMessage) (*errorMessage) += "Could not open the File: " + (m_stimPlanFileName()) + "\n";
return;
}
QXmlStreamReader xmlStream2;
xmlStream2.setDevice(&dataFile);
QString parameter;
QString unit;
RiaLogging::info(QString("Properties available in file:"));
while (!xmlStream2.atEnd())
{
xmlStream2.readNext();
if (xmlStream2.isStartElement())
{
if (xmlStream2.name() == "property")
{
unit = getAttributeValueString(xmlStream2, "uom");
parameter = getAttributeValueString(xmlStream2, "name");
RiaLogging::info(QString("%1 [%2]").arg(parameter, unit));
if (parameter == "CONDUCTIVITY")
{
if (unit == "md-ft")
{
fractureTemplateUnit = RimDefines::UNITS_FIELD;
RiaLogging::info(QString("Setting unit system to Field for StimPlan fracture template %1").arg(name));
}
if (unit == "md-m")
{
fractureTemplateUnit = RimDefines::UNITS_METRIC;
RiaLogging::info(QString("Setting unit system to Metric for StimPlan fracture template %1").arg(name));
}
}
}
else if (xmlStream2.name() == "time")
{
double timeStepValue = getAttributeValueDouble(xmlStream2, "value");
std::vector<std::vector<double>> propertyValuesAtTimestep = getAllDepthDataAtTimeStep(xmlStream2, startingNegXsValues);
bool valuesOK = numberOfParameterValuesOK(propertyValuesAtTimestep);
if (!valuesOK)
{
RiaLogging::error(QString("Inconsistency detected in reading XML file: '%1'").arg(dataFile.fileName()));
return;
}
m_stimPlanFractureDefinitionData->setDataAtTimeValue(parameter, unit, propertyValuesAtTimestep, timeStepValue);
}
}
}
dataFile.close();
if (xmlStream2.hasError())
{
RiaLogging::error(QString("Failed to parse file: '%1'").arg(dataFile.fileName()));
RiaLogging::error(xmlStream2.errorString());
}
else if (dataFile.error() != QFile::NoError)
{
RiaLogging::error(QString("Cannot read file: '%1'").arg(dataFile.fileName()));
RiaLogging::error(dataFile.errorString());
}
else
{
RiaLogging::info(QString("Successfully read XML file: '%1'").arg(fileName()));
}
RimEclipseView* activeView = dynamic_cast<RimEclipseView*>(RiaApplication::instance()->activeReservoirView());
if (!activeView) return;
activeView->stimPlanColors->loadDataAndUpdate();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::setDefaultsBasedOnXMLfile()
{
setDepthOfWellPathAtFracture();
RiaLogging::info(QString("Setting well/fracture intersection depth at %1").arg(wellPathDepthAtFracture));
activeTimeStepIndex = static_cast<int>(m_stimPlanFractureDefinitionData->totalNumberTimeSteps() - 1);
bool polygonPropertySet = setPropertyForPolygonDefault();
if (polygonPropertySet) RiaLogging::info(QString("Calculating polygon outline based on %1 at timestep %2").arg(parameterForPolygon).arg(m_stimPlanFractureDefinitionData->timeSteps[activeTimeStepIndex]));
else RiaLogging::info(QString("Property for polygon calculation not set."));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimStimPlanFractureTemplate::setPropertyForPolygonDefault()
{
//first option: Width
for (std::pair<QString, QString> property : getStimPlanPropertyNamesUnits())
{
if (property.first == "WIDTH")
{
parameterForPolygon = property.first;
return true;
}
}
//if width not found, use conductivity
for (std::pair<QString, QString> property : getStimPlanPropertyNamesUnits())
{
if (property.first == "CONDUCTIVITY")
{
parameterForPolygon = property.first;
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::loadDataAndUpdate()
{
QString errorMessage;
readStimPlanXMLFile(&errorMessage);
if (errorMessage.size() > 0) RiaLogging::error(errorMessage);
setupStimPlanCells();
updateConnectedEditors();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RimStimPlanFractureTemplate::getDataAtTimeIndex(const QString& resultName, const QString& unitName, size_t timeStepIndex) const
{
return m_stimPlanFractureDefinitionData->getDataAtTimeIndex(resultName, unitName, timeStepIndex);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RimStimPlanFractureTemplate::getMirroredDataAtTimeIndex(const QString& resultName, const QString& unitName, size_t timeStepIndex) const
{
std::vector<std::vector<double>> notMirrordedData = m_stimPlanFractureDefinitionData->getDataAtTimeIndex(resultName, unitName, timeStepIndex);
std::vector<std::vector<double>> mirroredData;
for (std::vector<double> depthData : notMirrordedData)
{
std::vector<double> mirrordDepthData = RivWellFracturePartMgr::mirrorDataAtSingleDepth(depthData);
mirroredData.push_back(mirrordDepthData);
}
return mirroredData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimStimPlanFractureTemplate::calculateValueOptions(const caf::PdmFieldHandle* fieldNeedingOptions, bool* useOptionsOnly)
{
QList<caf::PdmOptionItemInfo> options;
if (fieldNeedingOptions == &parameterForPolygon)
{
for (std::pair<QString, QString> nameUnit : getStimPlanPropertyNamesUnits())
{
//options.push_back(caf::PdmOptionItemInfo(nameUnit.first + " [" + nameUnit.second + "]", nameUnit.first + " " + nameUnit.second));
options.push_back(caf::PdmOptionItemInfo(nameUnit.first, nameUnit.first));
}
}
else if (fieldNeedingOptions == &activeTimeStepIndex)
{
std::vector<double> timeValues = getStimPlanTimeValues();
int index = 0;
for (double value : timeValues)
{
options.push_back(caf::PdmOptionItemInfo(QString::number(value), index));
index++;
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimStimPlanFractureTemplate::readStimplanGridAndTimesteps(QXmlStreamReader &xmlStream)
{
size_t startNegValuesXs = 0;
size_t startNegValuesYs = 0;
xmlStream.readNext();
//First, read time steps and grid to establish data structures for putting data into later.
while (!xmlStream.atEnd())
{
xmlStream.readNext();
if (xmlStream.isStartElement())
{
if (xmlStream.name() == "xs")
{
std::vector<double> gridValues;
getGriddingValues(xmlStream, gridValues, startNegValuesXs);
m_stimPlanFractureDefinitionData->gridXs = gridValues;
}
else if (xmlStream.name() == "ys")
{
std::vector<double> gridValues;
getGriddingValues(xmlStream, gridValues, startNegValuesYs);
m_stimPlanFractureDefinitionData->gridYs = gridValues;
m_stimPlanFractureDefinitionData->reorderYgridToDepths();
}
else if (xmlStream.name() == "time")
{
double timeStepValue = getAttributeValueDouble(xmlStream, "value");
if (!m_stimPlanFractureDefinitionData->timeStepExisist(timeStepValue))
{
m_stimPlanFractureDefinitionData->timeSteps.push_back(timeStepValue);
}
}
}
}
if (startNegValuesYs > 0)
{
RiaLogging::error(QString("Negative depth values detected in XML file"));
}
return startNegValuesXs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RimStimPlanFractureTemplate::getAllDepthDataAtTimeStep(QXmlStreamReader &xmlStream, size_t startingNegValuesXs)
{
std::vector<std::vector<double>> propertyValuesAtTimestep;
while (!(xmlStream.isEndElement() && xmlStream.name() == "time"))
{
xmlStream.readNext();
if (xmlStream.name() == "depth")
{
double depth = xmlStream.readElementText().toDouble();
std::vector<double> propertyValuesAtDepth;
xmlStream.readNext(); //read end depth token
xmlStream.readNext(); //read cdata section with values
if (xmlStream.isCDATA())
{
QString depthDataStr = xmlStream.text().toString();
for (int i = 0; i < depthDataStr.split(' ').size(); i++)
{
if (i < startingNegValuesXs) continue;
else
{
QString value = depthDataStr.split(' ')[i];
if ( value != "")
{
propertyValuesAtDepth.push_back(value.toDouble());
}
}
}
}
propertyValuesAtTimestep.push_back(propertyValuesAtDepth);
}
}
return propertyValuesAtTimestep;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimStimPlanFractureTemplate::numberOfParameterValuesOK(std::vector<std::vector<double>> propertyValuesAtTimestep)
{
size_t depths = m_stimPlanFractureDefinitionData->depths.size();
size_t gridXvalues = m_stimPlanFractureDefinitionData->gridXs.size();
if (propertyValuesAtTimestep.size() != depths) return false;
for (std::vector<double> valuesAtDepthVector : propertyValuesAtTimestep)
{
if (valuesAtDepthVector.size() != gridXvalues) return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::setDepthOfWellPathAtFracture()
{
if (!m_stimPlanFractureDefinitionData.isNull())
{
double firstDepth = m_stimPlanFractureDefinitionData->depths[0];
double lastDepth = m_stimPlanFractureDefinitionData->depths[m_stimPlanFractureDefinitionData->depths.size()-1];
double averageDepth = (firstDepth + lastDepth) / 2;
wellPathDepthAtFracture = averageDepth;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimStimPlanFractureTemplate::getUnitForStimPlanParameter(QString parameterName)
{
QString unit;
bool found = false;
bool foundMultiple = false;
for (std::pair<QString, QString> nameUnit : getStimPlanPropertyNamesUnits())
{
if (nameUnit.first == parameterName)
{
unit = nameUnit.second;
if (found) foundMultiple = true;
found = true;
}
}
if (foundMultiple) RiaLogging::error(QString("Multiple units found for same parameter"));
if (!found) RiaLogging::error(QString("Unit for parameter not found"));
return unit;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::getGriddingValues(QXmlStreamReader &xmlStream, std::vector<double>& gridValues, size_t& startNegValues)
{
QString gridValuesString = xmlStream.readElementText().replace('\n', ' ');
for (QString value : gridValuesString.split(' '))
{
if (value.size() > 0)
{
double gridValue = value.toDouble();
if (gridValue > -1e-5) //tolerance of 1e-5
{
gridValues.push_back(gridValue);
}
else startNegValues++;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimStimPlanFractureTemplate::getAttributeValueDouble(QXmlStreamReader &xmlStream, QString parameterName)
{
double value = cvf::UNDEFINED_DOUBLE;
for (const QXmlStreamAttribute &attr : xmlStream.attributes())
{
if (attr.name() == parameterName)
{
value = attr.value().toString().toDouble();
}
}
return value;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimStimPlanFractureTemplate::getAttributeValueString(QXmlStreamReader &xmlStream, QString parameterName)
{
QString parameterValue;
for (const QXmlStreamAttribute &attr : xmlStream.attributes())
{
if (attr.name() == parameterName)
{
parameterValue = attr.value().toString();
}
}
return parameterValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::fractureGeometry(std::vector<cvf::Vec3f>* nodeCoords, std::vector<cvf::uint>* triangleIndices, RimDefines::UnitSystem fractureUnit)
{
if (m_stimPlanFractureDefinitionData.isNull())
{
loadDataAndUpdate();
}
std::vector<double> xCoords = getNegAndPosXcoords();
cvf::uint lenXcoords = static_cast<cvf::uint>(xCoords.size());
std::vector<double> adjustedDepths = adjustedDepthCoordsAroundWellPathPosition();
if (fractureUnit == fractureTemplateUnit())
{
RiaLogging::debug(QString("No conversion necessary for %1").arg(name));
}
else if (fractureTemplateUnit() == RimDefines::UNITS_METRIC && fractureUnit == RimDefines::UNITS_FIELD)
{
RiaLogging::info(QString("Converting StimPlan geometry from metric to field for fracture template %1").arg(name));
for (double& value : adjustedDepths) value = RimDefines::meterToFeet(value);
for (double& value : xCoords) value = RimDefines::meterToFeet(value);
}
else if (fractureTemplateUnit() == RimDefines::UNITS_FIELD && fractureUnit == RimDefines::UNITS_METRIC)
{
RiaLogging::info(QString("Converting StimPlan geometry from field to metric for fracture template %1").arg(name));
for (double& value : adjustedDepths) value = RimDefines::feetToMeter(value);
for (double& value : xCoords) value = RimDefines::feetToMeter(value);
}
else
{
//Should never get here...
RiaLogging::error(QString("Error: Could not convert units for fracture template %1").arg(name));
return;
}
for (cvf::uint k = 0; k < adjustedDepths.size(); k++)
{
for (cvf::uint i = 0; i < lenXcoords; i++)
{
cvf::Vec3f node = cvf::Vec3f(xCoords[i], adjustedDepths[k], 0);
nodeCoords->push_back(node);
if (i < lenXcoords - 1 && k < adjustedDepths.size() - 1)
{
if (xCoords[i] < 1e-5)
{
//Upper triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
//Lower triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
triangleIndices->push_back((i)+(k + 1)*lenXcoords);
}
else
{
//Upper triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i)+(k + 1)*lenXcoords);
//Lower triangle
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
triangleIndices->push_back((i) + (k + 1)*lenXcoords);
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimStimPlanFractureTemplate::getNegAndPosXcoords() const
{
std::vector<double> allXcoords;
for (const double& xCoord : m_stimPlanFractureDefinitionData->gridXs)
{
if (xCoord > 1e-5)
{
double negXcoord = -xCoord;
allXcoords.insert(allXcoords.begin(), negXcoord);
}
}
for (const double& xCoord : m_stimPlanFractureDefinitionData->gridXs)
{
allXcoords.push_back(xCoord);
}
return allXcoords;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimStimPlanFractureTemplate::adjustedDepthCoordsAroundWellPathPosition() const
{
std::vector<double> depthRelativeToWellPath;
for (const double& depth : m_stimPlanFractureDefinitionData->depths)
{
double adjustedDepth = depth - wellPathDepthAtFracture();
adjustedDepth = -adjustedDepth;
depthRelativeToWellPath.push_back(adjustedDepth);
}
return depthRelativeToWellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimStimPlanFractureTemplate::getStimPlanTimeValues()
{
if (m_stimPlanFractureDefinitionData.isNull()) loadDataAndUpdate();
return m_stimPlanFractureDefinitionData->timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<QString, QString> > RimStimPlanFractureTemplate::getStimPlanPropertyNamesUnits() const
{
std::vector<std::pair<QString, QString> > propertyNamesUnits;
if (m_stimPlanFractureDefinitionData.notNull())
{
std::vector<RigStimPlanResultFrames > allStimPlanData = m_stimPlanFractureDefinitionData->stimPlanData;
for (RigStimPlanResultFrames stimPlanDataEntry : allStimPlanData)
{
propertyNamesUnits.push_back(std::make_pair(stimPlanDataEntry.resultName, stimPlanDataEntry.unit));
}
}
return propertyNamesUnits;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::computeMinMax(const QString& resultName, const QString& unitName, double* minValue, double* maxValue) const
{
if (m_stimPlanFractureDefinitionData.notNull())
{
m_stimPlanFractureDefinitionData->computeMinMax(resultName, unitName, minValue, maxValue);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::getStimPlanDataAsPolygonsAndValues(std::vector<std::vector<cvf::Vec3d> > &cellsAsPolygons, std::vector<double> &parameterValues, const QString& resultName, const QString& unitName, size_t timeStepIndex)
{
std::vector<std::vector<double>> propertyValuesAtTimeStep = getMirroredDataAtTimeIndex(resultName, unitName, timeStepIndex);
cellsAsPolygons.clear();
parameterValues.clear();
//TODO: Code partly copied from RivWellFracturePartMgr - can this be combined in some function?
std::vector<double> depthCoordsAtNodes = adjustedDepthCoordsAroundWellPathPosition();
std::vector<double> xCoordsAtNodes = getNegAndPosXcoords();
//Cells are around nodes instead of between nodes
std::vector<double> xCoords;
for (int i = 0; i < xCoordsAtNodes.size() - 1; i++) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for (int i = 0; i < depthCoordsAtNodes.size() - 1; i++) depthCoords.push_back((depthCoordsAtNodes[i] + depthCoordsAtNodes[i + 1]) / 2);
for (int i = 0; i < xCoords.size() - 1; i++)
{
for (int j = 0; j < depthCoords.size() - 1; j++)
{
std::vector<cvf::Vec3d> cellAsPolygon;
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j + 1]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j + 1]), 0.0));
cellsAsPolygons.push_back(cellAsPolygon);
//TODO: Values for both neg and pos x values...
parameterValues.push_back(propertyValuesAtTimeStep[j+1][i+1]); //TODO test that this value exsist...
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::setupStimPlanCells()
{
RimEclipseView* activeView = dynamic_cast<RimEclipseView*>(RiaApplication::instance()->activeReservoirView());
if (!activeView) return;
QString resultNameFromColors = activeView->stimPlanColors->resultName();
QString resultUnitFromColors = activeView->stimPlanColors->unit();
std::vector<RigStimPlanFracTemplateCell> stimPlanCells;
bool wellCenterStimPlanCellFound = false;
std::vector<std::vector<double>> displayPropertyValuesAtTimeStep = getMirroredDataAtTimeIndex(resultNameFromColors, resultUnitFromColors, activeTimeStepIndex);
QString condUnit;
if (fractureTemplateUnit == RimDefines::UNITS_METRIC) condUnit = "md-m";
if (fractureTemplateUnit == RimDefines::UNITS_FIELD) condUnit = "md-ft";
std::vector<std::vector<double>> conductivityValuesAtTimeStep = getMirroredDataAtTimeIndex("CONDUCTIVITY", condUnit, activeTimeStepIndex);
std::vector<double> depthCoordsAtNodes = adjustedDepthCoordsAroundWellPathPosition();
std::vector<double> xCoordsAtNodes = getNegAndPosXcoords();
std::vector<double> xCoords;
for (int i = 0; i < xCoordsAtNodes.size() - 1; i++) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for (int i = 0; i < depthCoordsAtNodes.size() - 1; i++) depthCoords.push_back((depthCoordsAtNodes[i] + depthCoordsAtNodes[i + 1]) / 2);
for (int i = 0; i < xCoords.size() - 1; i++)
{
for (int j = 0; j < depthCoords.size() - 1; j++)
{
std::vector<cvf::Vec3d> cellPolygon;
cellPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j]), 0.0));
cellPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j]), 0.0));
cellPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j + 1]), 0.0));
cellPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j + 1]), 0.0));
RigStimPlanFracTemplateCell stimPlanCell(cellPolygon, i, j);
if (conductivityValuesAtTimeStep.size() > 0) //Assuming vector to be of correct length, or no values
{
stimPlanCell.setConductivityValue(conductivityValuesAtTimeStep[j + 1][i + 1]);
}
else
{
stimPlanCell.setConductivityValue(cvf::UNDEFINED_DOUBLE);
}
if (displayPropertyValuesAtTimeStep.size() > 0)
{
stimPlanCell.setDisplayValue(displayPropertyValuesAtTimeStep[j + 1][i + 1]);
}
else
{
stimPlanCell.setDisplayValue(cvf::UNDEFINED_DOUBLE);
}
if (cellPolygon[0].x() < 0.0 && cellPolygon[1].x() > 0.0)
{
if (cellPolygon[1].y() > 0.0 && cellPolygon[2].y() < 0.0)
{
wellCenterStimPlanCellIJ = std::make_pair(stimPlanCell.getI(), stimPlanCell.getJ());
RiaLogging::debug(QString("Setting wellCenterStimPlanCell at cell %1, %2").
arg(QString::number(stimPlanCell.getI()), QString::number(stimPlanCell.getJ())));
wellCenterStimPlanCellFound = true;
}
}
stimPlanCells.push_back(stimPlanCell);
}
}
if (!wellCenterStimPlanCellFound)
{
RiaLogging::error("Did not find stim plan cell at well crossing!");
}
m_stimPlanCells = stimPlanCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<RigStimPlanFracTemplateCell>& RimStimPlanFractureTemplate::getStimPlanCells()
{
return m_stimPlanCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RimStimPlanFractureTemplate::getStimPlanRowPolygon(size_t i) //Row with constant depth
{
std::vector<cvf::Vec3d> rowPolygon;
std::vector<double> depthCoordsAtNodes = adjustedDepthCoordsAroundWellPathPosition();
std::vector<double> xCoordsAtNodes = getNegAndPosXcoords();
std::vector<double> xCoords;
for (int i = 0; i < xCoordsAtNodes.size() - 1; i++) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for (int i = 0; i < depthCoordsAtNodes.size() - 1; i++) depthCoords.push_back((depthCoordsAtNodes[i] + depthCoordsAtNodes[i + 1]) / 2);
rowPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[0]), static_cast<float>(depthCoords[i]), 0.0));
rowPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords.back()), static_cast<float>(depthCoords[i]), 0.0));
rowPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords.back()), static_cast<float>(depthCoords[i+1]), 0.0));
rowPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[0]), static_cast<float>(depthCoords[i+1]), 0.0));
return rowPolygon;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RimStimPlanFractureTemplate::getStimPlanColPolygon(size_t j)
{
std::vector<cvf::Vec3d> colPolygon;
std::vector<double> depthCoordsAtNodes = adjustedDepthCoordsAroundWellPathPosition();
std::vector<double> xCoordsAtNodes = getNegAndPosXcoords();
std::vector<double> xCoords;
for (int i = 0; i < xCoordsAtNodes.size() - 1; i++) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for (int i = 0; i < depthCoordsAtNodes.size() - 1; i++) depthCoords.push_back((depthCoordsAtNodes[i] + depthCoordsAtNodes[i + 1]) / 2);
colPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[j]), static_cast<float>(depthCoords[0]), 0.0));
colPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[j+1]), static_cast<float>(depthCoords[0]), 0.0));
colPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[j+1]), static_cast<float>(depthCoords.back()), 0.0));
colPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[j]), static_cast<float>(depthCoords.back()), 0.0));
return colPolygon;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<size_t, size_t> RimStimPlanFractureTemplate::getStimPlanCellAtWellCenter()
{
return wellCenterStimPlanCellIJ;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimStimPlanFractureTemplate::getGlobalIndexFromIJ(size_t i, size_t j) const
{
size_t length_I = stimPlanGridNumberOfRows() - 1;
size_t globIndex = j * length_I + i;
return globIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigStimPlanFracTemplateCell& RimStimPlanFractureTemplate::stimPlanCellFromIndex(size_t index) const
{
if (index < m_stimPlanCells.size())
{
const RigStimPlanFracTemplateCell& cell = m_stimPlanCells[index];
return cell;
}
else
{
//TODO: Better error handling?
RiaLogging::error("Requesting non-existent StimPlanCell");
RiaLogging::error("Returning cell 0, results will be invalid");
const RigStimPlanFracTemplateCell& cell = m_stimPlanCells[0];
return cell;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3f> RimStimPlanFractureTemplate::fracturePolygon(RimDefines::UnitSystem fractureUnit)
{
std::vector<cvf::Vec3f> polygon;
QString parameterName = parameterForPolygon;
QString parameterUnit = getUnitForStimPlanParameter(parameterName);
std::vector<std::vector<double>> dataAtTimeStep = m_stimPlanFractureDefinitionData->getDataAtTimeIndex(parameterName, parameterUnit, activeTimeStepIndex);
std::vector<double> adjustedDepths = adjustedDepthCoordsAroundWellPathPosition();
for (int k = 0; k < dataAtTimeStep.size(); k++)
{
for (int i = 0; i < dataAtTimeStep[k].size(); i++)
{
if ((dataAtTimeStep[k])[i] < 1e-7) //polygon should consist of nodes with value 0
{
if ((i > 0) && ((dataAtTimeStep[k])[(i - 1)] > 1e-7)) //side neighbour cell different from 0
{
polygon.push_back(cvf::Vec3f(static_cast<float>(m_stimPlanFractureDefinitionData->gridXs[i]),
static_cast<float>(adjustedDepths[k]), 0.0f));
}
else if ((k < dataAtTimeStep.size() - 1) && ((dataAtTimeStep[k + 1])[(i)] > 1e-7))//cell below different from 0
{
polygon.push_back(cvf::Vec3f(static_cast<float>(m_stimPlanFractureDefinitionData->gridXs[i]),
static_cast<float>(adjustedDepths[k]), 0.0f));
}
else if ((k > 0) && ((dataAtTimeStep[k - 1 ])[(i)] > 1e-7))//cell above different from 0
{
polygon.push_back(cvf::Vec3f(static_cast<float>(m_stimPlanFractureDefinitionData->gridXs[i]),
static_cast<float>(adjustedDepths[k]), 0.0f));
}
}
}
}
sortPolygon(polygon);
std::vector<cvf::Vec3f> negPolygon;
for (const cvf::Vec3f& node : polygon)
{
cvf::Vec3f negNode = node;
negNode.x() = -negNode.x();
negPolygon.insert(negPolygon.begin(), negNode);
}
for (const cvf::Vec3f& negNode : negPolygon)
{
polygon.push_back(negNode);
}
//Adding first point last - to close the polygon
if (polygon.size()>0) polygon.push_back(polygon[0]);
if (fractureUnit == fractureTemplateUnit())
{
RiaLogging::debug(QString("No conversion necessary for %1").arg(name));
}
else if (fractureTemplateUnit() == RimDefines::UNITS_METRIC && fractureUnit == RimDefines::UNITS_FIELD)
{
RiaLogging::info(QString("Converting StimPlan geometry from metric to field for fracture template %1").arg(name));
for (cvf::Vec3f& node : polygon)
{
float x = RimDefines::meterToFeet(node.x());
float y = RimDefines::meterToFeet(node.y());
float z = RimDefines::meterToFeet(node.z());
node = cvf::Vec3f(x, y, z);
}
}
else if (fractureTemplateUnit() == RimDefines::UNITS_FIELD && fractureUnit == RimDefines::UNITS_METRIC)
{
RiaLogging::info(QString("Converting StimPlan geometry from field to metric for fracture template %1").arg(name));
for (cvf::Vec3f& node : polygon)
{
float x = RimDefines::feetToMeter(node.x());
float y = RimDefines::feetToMeter(node.y());
float z = RimDefines::feetToMeter(node.z());
node = cvf::Vec3f(x, y, z);
}
}
else
{
//Should never get here...
RiaLogging::error(QString("Error: Could not convert units for fracture template %1").arg(name));
}
return polygon;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::sortPolygon(std::vector<cvf::Vec3f> &polygon)
{
if (polygon.size() == 0) return;
for (int i = 1; i < polygon.size() - 1; i++)
{
cvf::Vec3f lastNode = polygon[i - 1];
cvf::Vec3f node = polygon[i];
cvf::Vec3f nextNode = polygon[i + 1];
if (node.y() == nextNode.y())
{
if (lastNode.x() < node.x() && node.x() > nextNode.x())
{
polygon[i] = nextNode;
polygon[i + 1] = node;
}
else if (lastNode.x() > node.x() && node.x() < nextNode.x())
{
polygon[i] = nextNode;
polygon[i + 1] = node;
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimStimPlanFractureTemplate::stimPlanGridNumberOfColums() const
{
return getNegAndPosXcoords().size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimStimPlanFractureTemplate::stimPlanGridNumberOfRows() const
{
return adjustedDepthCoordsAroundWellPathPosition().size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::defineUiOrdering(QString uiConfigName, caf::PdmUiOrdering& uiOrdering)
{
RimFractureTemplate::defineUiOrdering(uiConfigName, uiOrdering);
uiOrdering.add(&name);
uiOrdering.add(&showStimPlanMesh);
caf::PdmUiGroup* fileGroup = uiOrdering.addNewGroup("Input");
fileGroup->add(&m_stimPlanFileName);
fileGroup->add(&activeTimeStepIndex);
fileGroup->add(&wellPathDepthAtFracture);
caf::PdmUiGroup* geometryGroup = uiOrdering.addNewGroup("Geometry");
geometryGroup->add(&orientation);
geometryGroup->add(&azimuthAngle);
caf::PdmUiGroup* propertyGroup = uiOrdering.addNewGroup("Properties");
propertyGroup->add(&fractureConductivity);
propertyGroup->add(&skinFactor);
propertyGroup->add(&perforationLength);
propertyGroup->add(&perforationEfficiency);
propertyGroup->add(&wellRadius);
caf::PdmUiGroup* polygonGroup = uiOrdering.addNewGroup("Fracture Polygon Basis");
polygonGroup->add(&parameterForPolygon);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::defineEditorAttribute(const caf::PdmFieldHandle* field, QString uiConfigName, caf::PdmUiEditorAttribute * attribute)
{
RimFractureTemplate::defineEditorAttribute(field, uiConfigName, attribute);
if (field == &m_stimPlanFileName)
{
caf::PdmUiFilePathEditorAttribute* myAttr = dynamic_cast<caf::PdmUiFilePathEditorAttribute*>(attribute);
if (myAttr)
{
myAttr->m_fileSelectionFilter = "StimPlan Xml Files(*.xml);;All Files (*.*)";
}
}
if (field == &wellPathDepthAtFracture)
{
if (!m_stimPlanFractureDefinitionData.isNull() && (m_stimPlanFractureDefinitionData->depths.size()>0))
{
caf::PdmUiDoubleSliderEditorAttribute* myAttr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>(attribute);
if (myAttr)
{
myAttr->m_minimum = m_stimPlanFractureDefinitionData->depths[0];
myAttr->m_maximum = m_stimPlanFractureDefinitionData->depths[m_stimPlanFractureDefinitionData->depths.size() - 1];
}
}
}
}