ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.h

178 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RiaDefines.h"
#include "cvfCollection.h"
#include <QDateTime>
#include <vector>
#include <cmath>
class RifReaderInterface;
class RigActiveCellInfo;
class RigMainGrid;
class RigEclipseResultInfo;
class RigStatisticsDataCache;
class RigEclipseTimeStepInfo;
class RigEclipseCaseData;
//==================================================================================================
/// Class containing the results for the complete number of active cells. Both main grid and LGR's
//==================================================================================================
class RigCaseCellResultsData : public cvf::Object
{
public:
explicit RigCaseCellResultsData(RigEclipseCaseData* ownerCaseData);
void setReaderInterface(RifReaderInterface* readerInterface);
void setHdf5Filename(const QString& hdf5SourSimFilename );
void setMainGrid(RigMainGrid* ownerGrid);
void setActiveCellInfo(RigActiveCellInfo* activeCellInfo);
RigActiveCellInfo* activeCellInfo();
const RigActiveCellInfo* activeCellInfo() const;
// Max and min values of the results
void recalculateStatistics(size_t scalarResultIndex);
void minMaxCellScalarValues(size_t scalarResultIndex, double& min, double& max);
void minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max);
void posNegClosestToZero(size_t scalarResultIndex, double& pos, double& neg);
void posNegClosestToZero(size_t scalarResultIndex, size_t timeStepIndex, double& pos, double& neg);
const std::vector<size_t>& cellScalarValuesHistogram(size_t scalarResultIndex);
const std::vector<size_t>& cellScalarValuesHistogram(size_t scalarResultIndex, size_t timeStepIndex);
void p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90);
void p10p90CellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& p10, double& p90);
void meanCellScalarValues(size_t scalarResultIndex, double& meanValue);
void meanCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& meanValue);
const std::vector<int>& uniqueCellScalarValues(size_t scalarResultIndex);
void sumCellScalarValues(size_t scalarResultIndex, double& sumValue);
void sumCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& sumValue);
void mobileVolumeWeightedMean(size_t scalarResultIndex, double& meanValue);
void mobileVolumeWeightedMean(size_t scalarResultIndex, size_t timeStepIndex, double& meanValue);
// Access meta-information about the results
size_t resultCount() const;
size_t timeStepCount(size_t scalarResultIndex) const;
size_t maxTimeStepCount(size_t* scalarResultIndex = nullptr) const;
QStringList resultNames(RiaDefines::ResultCatType type) const;
bool isUsingGlobalActiveIndex(size_t scalarResultIndex) const;
bool hasFlowDiagUsableFluxes() const;
std::vector<QDateTime> allTimeStepDatesFromEclipseReader() const;
std::vector<QDateTime> timeStepDates() const;
std::vector<QDateTime> timeStepDates(size_t scalarResultIndex) const;
std::vector<double> daysSinceSimulationStart() const;
std::vector<double> daysSinceSimulationStart(size_t scalarResultIndex) const;
int reportStepNumber(size_t scalarResultIndex, size_t timeStepIndex) const;
std::vector<RigEclipseTimeStepInfo> timeStepInfos(size_t scalarResultIndex) const;
void setTimeStepInfos(size_t scalarResultIndex, const std::vector<RigEclipseTimeStepInfo>& timeStepInfos);
size_t findOrLoadScalarResultForTimeStep(RiaDefines::ResultCatType type, const QString& resultName, size_t timeStepIndex);
size_t findOrLoadScalarResult(RiaDefines::ResultCatType type, const QString& resultName);
size_t findOrLoadScalarResult(const QString& resultName); ///< Simplified search. Assumes unique names across types.
// Find or create a slot for the results
size_t findOrCreateScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored);
size_t findScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName) const;
size_t findScalarResultIndex(const QString& resultName) const;
QString makeResultNameUnique(const QString& resultNameProposal) const;
void createPlaceholderResultEntries();
void computeDepthRelatedResults();
void computeCellVolumes();
void clearScalarResult(RiaDefines::ResultCatType type, const QString & resultName);
void clearScalarResult(const RigEclipseResultInfo& resultInfo);
void clearAllResults();
void freeAllocatedResultsData();
bool isResultLoaded(const RigEclipseResultInfo& resultInfo) const;
// Access the results data
const std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex) const;
std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex);
std::vector<double>& cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex);
bool updateResultName(RiaDefines::ResultCatType resultType, QString& oldName, const QString& newName);
static const std::vector<double>* getResultIndexableStaticResult(RigActiveCellInfo* actCellInfo,
RigCaseCellResultsData* gridCellResults,
QString porvResultName,
std::vector<double> &activeCellsResultsTempContainer);
public:
const std::vector<RigEclipseResultInfo>& infoForEachResultIndex();
bool mustBeCalculated(size_t scalarResultIndex) const;
void setMustBeCalculated(size_t scalarResultIndex);
void eraseAllSourSimData();
public:
size_t addStaticScalarResult(RiaDefines::ResultCatType type,
const QString& resultName,
bool needsToBeStored,
size_t resultValueCount);
bool
findTransmissibilityResults(size_t& tranX, size_t& tranY, size_t& tranZ) const;
private: // from RimReservoirCellResultsStorage
void computeSOILForTimeStep(size_t timeStepIndex);
void testAndComputeSgasForTimeStep(size_t timeStepIndex);
void computeRiTransComponent(const QString& riTransComponentResultName);
void computeNncCombRiTrans();
void computeRiMULTComponent(const QString& riMultCompName);
void computeNncCombRiMULT();
void computeRiTRANSbyAreaComponent(const QString& riTransByAreaCompResultName);
void computeNncCombRiTRANSbyArea();
void computeCompletionTypeForTimeStep(size_t timeStep);
double darchysValue();
void computeOilVolumes();
void computeMobilePV();
bool isDataPresent(size_t scalarResultIndex) const;
void assignValuesToTemporaryLgrs(const QString& resultName, std::vector<double>& values);
cvf::ref<RifReaderInterface> m_readerInterface;
private:
std::vector< std::vector< std::vector<double> > > m_cellScalarResults; ///< Scalar results on the complete reservoir for each Result index (ResultVariable) and timestep
cvf::Collection<RigStatisticsDataCache> m_statisticsDataCache;
private:
std::vector<RigEclipseResultInfo> m_resultInfos;
RigMainGrid* m_ownerMainGrid;
RigEclipseCaseData* m_ownerCaseData;
RigActiveCellInfo* m_activeCellInfo;
};