ResInsight/ApplicationCode/ReservoirDataModel/RigNNCData.cpp
2018-08-07 10:37:52 +02:00

543 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNNCData.h"
#include "RigMainGrid.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNNCData::RigNNCData()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::processConnections(const RigMainGrid& mainGrid)
{
//cvf::Trace::show("NNC: Total number: " + cvf::String((int)m_connections.size()));
for (size_t cnIdx = 0; cnIdx < m_connections.size(); ++cnIdx)
{
const RigCell& c1 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c1GlobIdx];
const RigCell& c2 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c2GlobIdx];
bool foundAnyOverlap = false;
std::vector<size_t> connectionPolygon;
std::vector<cvf::Vec3d> connectionIntersections;
cvf::StructGridInterface::FaceType connectionFace = cvf::StructGridInterface::NO_FACE;
connectionFace = calculateCellFaceOverlap(c1, c2, mainGrid, &connectionPolygon, &connectionIntersections);
if (connectionFace != cvf::StructGridInterface::NO_FACE)
{
foundAnyOverlap = true;
// Found an overlap polygon. Store data about connection
m_connections[cnIdx].m_c1Face = connectionFace;
for (size_t pIdx = 0; pIdx < connectionPolygon.size(); ++pIdx)
{
if (connectionPolygon[pIdx] < mainGrid.nodes().size())
m_connections[cnIdx].m_polygon.push_back(mainGrid.nodes()[connectionPolygon[pIdx]]);
else
m_connections[cnIdx].m_polygon.push_back(connectionIntersections[connectionPolygon[pIdx] - mainGrid.nodes().size()]);
}
// Add to search map, possibly not needed
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][connectionFace].push_back(cnIdx);
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::oppositeFace(connectionFace].push_back(cnIdx);
}
else
{
//cvf::Trace::show("NNC: No overlap found for : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + "C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::StructGridInterface::FaceType RigNNCData::calculateCellFaceOverlap(const RigCell &c1,
const RigCell &c2,
const RigMainGrid &mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections)
{
// Try to find the shared face
bool isPossibleNeighborInDirection[6]={ true, true, true, true, true, true };
if ( c1.hostGrid() == c2.hostGrid() )
{
char hasNeighbourInAnyDirection = 0;
size_t i1, j1, k1;
c1.hostGrid()->ijkFromCellIndex(c1.gridLocalCellIndex(), &i1, &j1, &k1);
size_t i2, j2, k2;
c2.hostGrid()->ijkFromCellIndex(c2.gridLocalCellIndex(), &i2, &j2, &k2);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ((i1 + 1) == i2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ((i2 + 1) == i1);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ((j1 + 1) == j2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ((j2 + 1) == j1);
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ((k1 + 1) == k2);
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ((k2 + 1) == k1);
hasNeighbourInAnyDirection =
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K]
+ isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K];
// If cell 2 is not adjancent with respect to any of the six ijk directions,
// assume that we have no overlapping area.
if ( !hasNeighbourInAnyDirection )
{
// Add to search map
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
//m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
//cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
return cvf::StructGridInterface::NO_FACE;
}
}
#if 0
// Possibly do some testing to avoid unneccesary overlap calculations
cvf::Vec3d normal;
for ( char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( isPossibleNeighborInDirection[fIdx] )
{
cvf::Vec3d fc1 = c1.faceCenter((cvf::StructGridInterface::FaceType)(fIdx));
cvf::Vec3d fc2 = c2.faceCenter(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)));
cvf::Vec3d fc1ToFc2 = fc2 - fc1;
normal = c1.faceNormalWithAreaLenght((cvf::StructGridInterface::FaceType)(fIdx));
normal.normalize();
// Check that face centers are approx in the face plane
if ( normal.dot(fc1ToFc2) < 0.01*fc1ToFc2.length() )
{
}
}
}
#endif
for ( unsigned char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( !isPossibleNeighborInDirection[fIdx] )
{
continue;
}
// Calculate connection polygon
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> face1;
std::array<size_t, 4> face2;
c1.faceIndices((cvf::StructGridInterface::FaceType)(fIdx), &face1);
c2.faceIndices(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)), &face2);
bool foundOverlap = cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst(&mainGrid.nodes()),
face1.data(),
face2.data(),
1e-6);
if ( foundOverlap )
{
if (connectionPolygon)(*connectionPolygon) = polygon;
if (connectionIntersections) (*connectionIntersections) = intersections;
return (cvf::StructGridInterface::FaceType)(fIdx);
}
}
return cvf::StructGridInterface::NO_FACE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>& RigNNCData::makeStaticConnectionScalarResult(QString nncDataType)
{
std::vector< std::vector<double> >& results = m_connectionResults[nncDataType];
results.resize(1);
results[0].resize(m_connections.size(), HUGE_VAL);
return results[0];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::staticConnectionScalarResult(size_t scalarResultIndex) const
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
std::map<QString, std::vector< std::vector<double> > >::const_iterator it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
CVF_ASSERT(it->second.size() == 1);
return &(it->second[0]);
}
else
{
return nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::staticConnectionScalarResultByName(const QString& nncDataType) const
{
std::map<QString, std::vector< std::vector<double> > >::const_iterator it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
CVF_ASSERT(it->second.size() == 1);
return &(it->second[0]);
}
else
{
return nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector< std::vector<double> >& RigNNCData::makeDynamicConnectionScalarResult(QString nncDataType, size_t timeStepCount)
{
auto& results = m_connectionResults[nncDataType];
results.resize(timeStepCount);
return results;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector< std::vector<double> >* RigNNCData::dynamicConnectionScalarResult(size_t scalarResultIndex) const
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
else
{
return nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::dynamicConnectionScalarResult(size_t scalarResultIndex, size_t timeStep) const
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<std::vector<double>>* RigNNCData::dynamicConnectionScalarResultByName(const QString& nncDataType) const
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::dynamicConnectionScalarResultByName(const QString& nncDataType, size_t timeStep) const
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector< std::vector<double> >& RigNNCData::makeGeneratedConnectionScalarResult(QString nncDataType, size_t timeStepCount)
{
auto& results = m_connectionResults[nncDataType];
results.resize(timeStepCount);
return results;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector< std::vector<double> >* RigNNCData::generatedConnectionScalarResult(size_t scalarResultIndex) const
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
else
{
return nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::generatedConnectionScalarResult(size_t scalarResultIndex, size_t timeStep) const
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector< std::vector<double> >* RigNNCData::generatedConnectionScalarResult(size_t scalarResultIndex)
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
else
{
return nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>* RigNNCData::generatedConnectionScalarResult(size_t scalarResultIndex, size_t timeStep)
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return nullptr;
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<std::vector<double>>* RigNNCData::generatedConnectionScalarResultByName(const QString& nncDataType) const
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>* RigNNCData::generatedConnectionScalarResultByName(const QString& nncDataType, size_t timeStep) const
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>>* RigNNCData::generatedConnectionScalarResultByName(const QString& nncDataType)
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
return &(it->second);
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>* RigNNCData::generatedConnectionScalarResultByName(const QString& nncDataType, size_t timeStep)
{
auto it = m_connectionResults.find(nncDataType);
if (it != m_connectionResults.end())
{
if (it->second.size() > timeStep)
{
return &(it->second[timeStep]);
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QString> RigNNCData::availableProperties(NNCResultType resultType) const
{
std::vector<QString> properties;
for (auto it : m_connectionResults)
{
if (resultType == NNC_STATIC && it.second.size() == 1 && it.second[0].size() > 0 && isNative(it.first))
{
properties.push_back(it.first);
}
else if (resultType == NNC_DYNAMIC && it.second.size() > 1 && it.second[0].size() > 0 && isNative(it.first))
{
properties.push_back(it.first);
}
else if (resultType == NNC_GENERATED && !isNative(it.first))
{
properties.push_back(it.first);
}
}
return properties;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::setScalarResultIndex(const QString& nncDataType, size_t scalarResultIndex)
{
m_resultIndexToNNCDataType[scalarResultIndex] = nncDataType;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigNNCData::hasScalarValues(size_t scalarResultIndex)
{
QString nncDataType = getNNCDataTypeFromScalarResultIndex(scalarResultIndex);
if (nncDataType.isNull()) return false;
auto it = m_connectionResults.find(nncDataType);
return (it != m_connectionResults.end());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const QString RigNNCData::getNNCDataTypeFromScalarResultIndex(size_t scalarResultIndex) const
{
auto it = m_resultIndexToNNCDataType.find(scalarResultIndex);
if (it != m_resultIndexToNNCDataType.end())
{
return it->second;
}
return QString();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigNNCData::isNative(QString nncDataType) const
{
if (nncDataType == RigNNCData::propertyNameCombTrans() ||
nncDataType == RigNNCData::propertyNameFluxGas() ||
nncDataType == RigNNCData::propertyNameFluxOil() ||
nncDataType == RigNNCData::propertyNameFluxWat() ||
nncDataType == RigNNCData::propertyNameRiCombMult() ||
nncDataType == RigNNCData::propertyNameRiCombTrans() ||
nncDataType == RigNNCData::propertyNameRiCombTransByArea())
{
return true;
}
return false;
}