ResInsight/ApplicationCode/ReservoirDataModel/RigTofAccumulatedPhaseFractionsCalculator.cpp

146 lines
7.6 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigTofAccumulatedPhaseFractionsCalculator.h"
#include "RiaDefines.h"
#include "RiaPorosityModel.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigFlowDiagResultAddress.h"
#include "RigFlowDiagResults.h"
#include "RigResultAccessor.h"
#include "RigResultAccessorFactory.h"
#include "RimEclipseResultCase.h"
#include "RimFlowDiagSolution.h"
#include "RimReservoirCellResultsStorage.h"
#include <map>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigTofAccumulatedPhaseFractionsCalculator::RigTofAccumulatedPhaseFractionsCalculator(RimEclipseResultCase* caseToApply,
QString wellname,
size_t timestep)
{
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
const std::vector<double>* swatResults = eclipseCaseData->resultValues(RiaDefines::MATRIX_MODEL, RiaDefines::DYNAMIC_NATIVE, "SWAT", timestep);
const std::vector<double>* soilResults = eclipseCaseData->resultValues(RiaDefines::MATRIX_MODEL, RiaDefines::DYNAMIC_NATIVE, "SOIL", timestep);
const std::vector<double>* sgasResults = eclipseCaseData->resultValues(RiaDefines::MATRIX_MODEL, RiaDefines::DYNAMIC_NATIVE, "SGAS", timestep);
const std::vector<double>* porvResults = eclipseCaseData->resultValues(RiaDefines::MATRIX_MODEL, RiaDefines::STATIC_NATIVE, "PORV", 0);
RimFlowDiagSolution* flowDiagSolution = caseToApply->defaultFlowDiagSolution();
std::string resultNameTof = "TOF";
const std::vector<double>* tofData = flowDiagSolution->flowDiagResults()->resultValues(RigFlowDiagResultAddress(resultNameTof,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString()),
timestep);
std::string resultNameFraction = "Fraction";
const std::vector<double>* fractionData = flowDiagSolution->flowDiagResults()->resultValues(RigFlowDiagResultAddress(resultNameFraction,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString()),
timestep);
sortTofAndCalculateAccPhaseFraction(tofData,
fractionData,
porvResults,
swatResults,
soilResults,
sgasResults,
m_tofInIncreasingOrder,
m_accumulatedPhaseFractionSwat,
m_accumulatedPhaseFractionSoil,
m_accumulatedPhaseFractionSgas);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigTofAccumulatedPhaseFractionsCalculator::sortTofAndCalculateAccPhaseFraction(const std::vector<double>* tofData,
const std::vector<double>* fractionData,
const std::vector<double>* porvResults,
const std::vector<double>* swatResults,
const std::vector<double>* soilResults,
const std::vector<double>* sgasResults,
std::vector<double>& tofInIncreasingOrder,
std::vector<double>& accumulatedPhaseFractionSwat,
std::vector<double>& accumulatedPhaseFractionSoil,
std::vector<double>& accumulatedPhaseFractionSgas)
{
if (tofData == nullptr || fractionData == nullptr)
{
return;
}
std::map<double, std::vector<int> > tofAndIndexMap;
for (int i = 0; i < static_cast<int>(tofData->size()); i++)
{
if ((*tofData)[i] == HUGE_VAL) continue;
std::vector<int> vectorOfIndexes;
vectorOfIndexes.push_back(i);
auto iteratorBoolFromInsertToMap = tofAndIndexMap.insert(std::make_pair(tofData->at(i), vectorOfIndexes));
if (!iteratorBoolFromInsertToMap.second)
{
//Element exist already, was not inserted
iteratorBoolFromInsertToMap.first->second.push_back(i);
}
}
double fractionPorvSum = 0.0;
double fractionPorvPhaseSumSwat = 0.0;
double fractionPorvPhaseSumSoil = 0.0;
double fractionPorvPhaseSumSgas = 0.0;
for (auto element : tofAndIndexMap)
{
double tofValue = element.first;
for (int index : element.second)
{
fractionPorvSum += fractionData->at(index) * porvResults->at(index);
if (swatResults != nullptr)
{
fractionPorvPhaseSumSwat += fractionData->at(index) * porvResults->at(index) * swatResults->at(index);
}
if (soilResults != nullptr)
{
fractionPorvPhaseSumSoil += fractionData->at(index) * porvResults->at(index) * soilResults->at(index);
}
if (sgasResults != nullptr)
{
fractionPorvPhaseSumSgas += fractionData->at(index) * porvResults->at(index) * sgasResults->at(index);
}
}
tofInIncreasingOrder.push_back(tofValue);
accumulatedPhaseFractionSwat.push_back(fractionPorvPhaseSumSwat / fractionPorvSum);
accumulatedPhaseFractionSoil.push_back(fractionPorvPhaseSumSoil / fractionPorvSum);
accumulatedPhaseFractionSgas.push_back(fractionPorvPhaseSumSgas / fractionPorvSum);
}
}