ResInsight/ApplicationCode/Commands/WellPathCommands/RicWellPathExportCompletionDataFeature.cpp
2017-05-19 11:43:47 +02:00

627 lines
25 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RicWellPathExportCompletionDataFeature.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RimProject.h"
#include "RimWellPath.h"
#include "RimFishbonesMultipleSubs.h"
#include "RimExportCompletionDataSettings.h"
#include "RiuMainWindow.h"
#include "RigWellLogExtractionTools.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigWellPath.h"
#include "cafSelectionManager.h"
#include "cafPdmUiPropertyViewDialog.h"
#include "cvfPlane.h"
#include <QAction>
#include <QFileDialog>
#include <QMessageBox>
CAF_CMD_SOURCE_INIT(RicWellPathExportCompletionDataFeature, "RicWellPathExportCompletionDataFeature");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicWellPathExportCompletionDataFeature::isCommandEnabled()
{
std::vector<RimWellPath*> objects;
caf::SelectionManager::instance()->objectsByType(&objects);
if (objects.size() == 1) {
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::onActionTriggered(bool isChecked)
{
std::vector<RimWellPath*> objects;
caf::SelectionManager::instance()->objectsByType(&objects);
CVF_ASSERT(objects.size() == 1);
RiaApplication* app = RiaApplication::instance();
QString projectFolder = app->currentProjectPath();
QString defaultDir = RiaApplication::instance()->lastUsedDialogDirectoryWithFallback("COMPLETIONS", projectFolder);
RimExportCompletionDataSettings exportSettings;
std::vector<RimCase*> cases;
app->project()->allCases(cases);
for (auto c : cases)
{
RimEclipseCase* eclipseCase = dynamic_cast<RimEclipseCase*>(c);
if (eclipseCase != nullptr)
{
exportSettings.caseToApply = eclipseCase;
break;
}
}
exportSettings.fileName = QDir(defaultDir).filePath("Completions");
caf::PdmUiPropertyViewDialog propertyDialog(RiuMainWindow::instance(), &exportSettings, "Export Completion Data", "");
if (propertyDialog.exec() == QDialog::Accepted)
{
RiaApplication::instance()->setLastUsedDialogDirectory("COMPLETIONS", QFileInfo(exportSettings.fileName).absolutePath());
exportToFolder(objects[0], exportSettings.fileName, exportSettings.caseToApply, exportSettings.includeWpimult(), exportSettings.removeLateralsInMainBoreCells());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::setupActionLook(QAction* actionToSetup)
{
actionToSetup->setText("Export Completion Data");
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::exportToFolder(RimWellPath* wellPath, const QString& fileName, const RimEclipseCase* caseToApply, bool includeWpimult, bool removeLateralsInMainBoreCells)
{
QFile exportFile(fileName);
if (caseToApply == nullptr)
{
RiaLogging::error("Export Completions Data: Cannot export completions data without specified eclipse case");
return;
}
if (!exportFile.open(QIODevice::WriteOnly))
{
RiaLogging::error(QString("Export Completions Data: Could not open the file: %1").arg(fileName));
return;
}
QTextStream stream(&exportFile);
const RigEclipseCaseData* caseData = caseToApply->eclipseCaseData();
std::vector<size_t> wellPathCells;
if (removeLateralsInMainBoreCells)
{
wellPathCells = findIntersectingCells(caseData, wellPath->wellPathGeometry()->m_wellPathPoints);
}
std::map<size_t, double> lateralsPerCell;
RifEclipseOutputTableFormatter formatter(stream);
// COMPDAT
{
std::vector<RifEclipseOutputTableColumn> header = {
RifEclipseOutputTableColumn{"Well", LEFT},
RifEclipseOutputTableColumn{"I", LEFT},
RifEclipseOutputTableColumn{"J", LEFT},
RifEclipseOutputTableColumn{"K1", LEFT},
RifEclipseOutputTableColumn{"K2", LEFT},
RifEclipseOutputTableColumn{"Status", LEFT},
RifEclipseOutputTableColumn{"SAT", LEFT},
RifEclipseOutputTableColumn{"TR", LEFT},
RifEclipseOutputTableColumn{"DIAM", LEFT},
RifEclipseOutputTableColumn{"KH", LEFT},
RifEclipseOutputTableColumn{"S", LEFT},
RifEclipseOutputTableColumn{"Df", LEFT},
RifEclipseOutputTableColumn{"DIR", LEFT},
RifEclipseOutputTableColumn{"r0", LEFT}
};
formatter.keyword("COMPDAT");
formatter.header(header);
for (RimFishbonesMultipleSubs* subs : wellPath->fishbonesSubs)
{
for (size_t subIndex = 0; subIndex < subs->locationOfSubs().size(); ++subIndex)
{
for (size_t lateralIndex = 0; lateralIndex < subs->lateralLengths().size(); ++lateralIndex)
{
std::vector<cvf::Vec3d> lateralCoords = subs->coordsForLateral(subIndex, lateralIndex);
std::vector<size_t> lateralCells = findIntersectingCells(caseData, lateralCoords);
if (includeWpimult)
{
// Only need this data if WPIMULT should be included in file
addLateralToCells(&lateralsPerCell, lateralCells);
}
if (removeLateralsInMainBoreCells)
{
lateralCells = filterWellPathCells(lateralCells, wellPathCells);
}
std::vector<EclipseCellIndexRange> cellRanges = getCellIndexRange(caseData->mainGrid(), lateralCells);
formatter.comment(QString("Fishbone %1 - Sub: %2 - Lateral: %3").arg(subs->name()).arg(subIndex).arg(lateralIndex));
for (auto cellRange : cellRanges)
{
// Add cell indices
formatter.add(wellPath->name()).addZeroBasedCellIndex(cellRange.i).addZeroBasedCellIndex(cellRange.j).addZeroBasedCellIndex(cellRange.k1).addZeroBasedCellIndex(cellRange.k2);
// Remaining data, to be computed
formatter.add("'OPEN'").add("1*").add("1*");
// Diameter (originally in mm) in m
formatter.add(subs->holeRadius() / 1000);
formatter.add("1*").add("1*").add("1*").add("'Z'").add("1*");
formatter.rowCompleted();
}
}
}
}
formatter.tableCompleted();
}
// WPIMULT
if (includeWpimult)
{
std::vector<RifEclipseOutputTableColumn> header = {
RifEclipseOutputTableColumn{"Well", LEFT},
RifEclipseOutputTableColumn{"Mult", LEFT},
RifEclipseOutputTableColumn{"I", LEFT},
RifEclipseOutputTableColumn{"J", LEFT},
RifEclipseOutputTableColumn{"K", LEFT},
};
formatter.keyword("WPIMULT");
formatter.header(header);
for (auto lateralsInCell : lateralsPerCell)
{
size_t i, j, k;
caseData->mainGrid()->ijkFromCellIndex(lateralsInCell.first, &i, &j, &k);
formatter.add(wellPath->name()).add(lateralsInCell.second).addZeroBasedCellIndex(i).addZeroBasedCellIndex(j).addZeroBasedCellIndex(k);
formatter.rowCompleted();
}
formatter.tableCompleted();
}
computeWellSegments(formatter, wellPath, caseToApply);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RicWellPathExportCompletionDataFeature::findCloseCells(const RigEclipseCaseData* caseData, const cvf::BoundingBox& bb)
{
std::vector<size_t> closeCells;
caseData->mainGrid()->findIntersectingCells(bb, &closeCells);
return closeCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<EclipseCellIndexRange> RicWellPathExportCompletionDataFeature::getCellIndexRange(const RigMainGrid* grid, const std::vector<size_t>& cellIndices)
{
// Retrieve I, J, K indices
std::vector<EclipseCellIndex> eclipseCellIndices;
for (auto cellIndex : cellIndices)
{
size_t i, j, k;
if (!grid->ijkFromCellIndex(cellIndex, &i, &j, &k)) continue;
eclipseCellIndices.push_back(std::make_tuple(i, j, k));
}
// Group cell indices in K-ranges
std::sort(eclipseCellIndices.begin(), eclipseCellIndices.end(), RicWellPathExportCompletionDataFeature::cellOrdering);
std::vector<EclipseCellIndexRange> eclipseCellRanges;
size_t lastI = std::numeric_limits<size_t>::max();
size_t lastJ = std::numeric_limits<size_t>::max();
size_t lastK = std::numeric_limits<size_t>::max();
size_t startK = std::numeric_limits<size_t>::max();
for (EclipseCellIndex cell : eclipseCellIndices)
{
size_t i, j, k;
std::tie(i, j, k) = cell;
if (i != lastI || j != lastJ || k != lastK + 1)
{
if (startK != std::numeric_limits<size_t>::max())
{
EclipseCellIndexRange cellRange = {lastI, lastJ, startK, lastK};
eclipseCellRanges.push_back(cellRange);
}
lastI = i;
lastJ = j;
lastK = k;
startK = k;
}
else
{
lastK = k;
}
}
// Append last cell range
if (startK != std::numeric_limits<size_t>::max())
{
EclipseCellIndexRange cellRange = {lastI, lastJ, startK, lastK};
eclipseCellRanges.push_back(cellRange);
}
return eclipseCellRanges;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicWellPathExportCompletionDataFeature::cellOrdering(const EclipseCellIndex& cell1, const EclipseCellIndex& cell2)
{
size_t i1, i2, j1, j2, k1, k2;
std::tie(i1, j1, k1) = cell1;
std::tie(i2, j2, k2) = cell2;
if (i1 == i2)
{
if (j1 == j2)
{
return k1 < k2;
}
else
{
return j1 < j2;
}
}
else
{
return i1 < i2;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RicWellPathExportCompletionDataFeature::findIntersectingCells(const RigEclipseCaseData* caseData, const std::vector<cvf::Vec3d>& coords)
{
const std::vector<cvf::Vec3d>& nodeCoords = caseData->mainGrid()->nodes();
std::set<size_t> cells;
// Find starting cell
if (coords.size() > 0)
{
cvf::BoundingBox bb;
bb.add(coords[0]);
std::vector<size_t> closeCells = findCloseCells(caseData, bb);
cvf::Vec3d hexCorners[8];
for (size_t closeCell : closeCells)
{
const RigCell& cell = caseData->mainGrid()->globalCellArray()[closeCell];
if (cell.isInvalid()) continue;
setHexCorners(cell, nodeCoords, hexCorners);
if (RigHexIntersector::isPointInCell(coords[0], hexCorners, closeCell))
{
cells.insert(closeCell);
break;
}
}
}
std::vector<HexIntersectionInfo> intersections = findIntersections(caseData, coords);
for (auto intersection : intersections)
{
cells.insert(intersection.m_hexIndex);
}
// Ensure only unique cells are included
std::vector<size_t> cellsVector;
cellsVector.assign(cells.begin(), cells.end());
// Sort cells
std::sort(cellsVector.begin(), cellsVector.end());
return cellsVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<HexIntersectionInfo> RicWellPathExportCompletionDataFeature::findIntersections(const RigEclipseCaseData* caseData, const std::vector<cvf::Vec3d>& coords)
{
const std::vector<cvf::Vec3d>& nodeCoords = caseData->mainGrid()->nodes();
std::vector<HexIntersectionInfo> intersections;
for (size_t i = 0; i < coords.size() - 1; ++i)
{
cvf::BoundingBox bb;
bb.add(coords[i]);
bb.add(coords[i + 1]);
std::vector<size_t> closeCells = findCloseCells(caseData, bb);
cvf::Vec3d hexCorners[8];
for (size_t closeCell : closeCells)
{
const RigCell& cell = caseData->mainGrid()->globalCellArray()[closeCell];
if (cell.isInvalid()) continue;
setHexCorners(cell, nodeCoords, hexCorners);
RigHexIntersector::lineHexCellIntersection(coords[i], coords[i + 1], hexCorners, closeCell, &intersections);
}
}
return intersections;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::setHexCorners(const RigCell& cell, const std::vector<cvf::Vec3d>& nodeCoords, cvf::Vec3d* hexCorners)
{
const caf::SizeTArray8& cornerIndices = cell.cornerIndices();
hexCorners[0] = nodeCoords[cornerIndices[0]];
hexCorners[1] = nodeCoords[cornerIndices[1]];
hexCorners[2] = nodeCoords[cornerIndices[2]];
hexCorners[3] = nodeCoords[cornerIndices[3]];
hexCorners[4] = nodeCoords[cornerIndices[4]];
hexCorners[5] = nodeCoords[cornerIndices[5]];
hexCorners[6] = nodeCoords[cornerIndices[6]];
hexCorners[7] = nodeCoords[cornerIndices[7]];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RicWellPathExportCompletionDataFeature::filterWellPathCells(const std::vector<size_t>& completionCells, const std::vector<size_t>& wellPathCells)
{
std::vector<size_t> filteredCells;
std::set_difference(completionCells.begin(), completionCells.end(), wellPathCells.begin(), wellPathCells.end(), std::back_inserter(filteredCells));
return filteredCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::addLateralToCells(std::map<size_t, double>* lateralsPerCell, const std::vector<size_t>& lateralCells)
{
for (size_t cell : lateralCells)
{
std::map<size_t, double>::iterator it = lateralsPerCell->find(cell);
if (it == lateralsPerCell->end())
{
(*lateralsPerCell)[cell] = 1;
}
else
{
(*lateralsPerCell)[cell] = it->second + 1;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::computeWellSegments(RifEclipseOutputTableFormatter& formatter, RimWellPath* wellPath, const RimEclipseCase* caseToApply)
{
std::vector<WellSegmentLocation> wellSegmentLocations = findWellSegmentLocations(wellPath);
if (wellSegmentLocations.empty()) return;
formatter.keyword("WELSEGS");
WellSegmentLocation& firstLocation = wellSegmentLocations[0];
{
std::vector<RifEclipseOutputTableColumn> header = {
RifEclipseOutputTableColumn{"Name", LEFT},
RifEclipseOutputTableColumn{"Dep 1", LEFT},
RifEclipseOutputTableColumn{"Tlen 1", LEFT},
RifEclipseOutputTableColumn{"Vol 1", LEFT},
RifEclipseOutputTableColumn{"Len&Dep", LEFT},
RifEclipseOutputTableColumn{"PresDrop", LEFT},
};
formatter.header(header);
formatter.add(wellPath->name());
formatter.add(firstLocation.trueVerticalDepth);
formatter.add(firstLocation.measuredDepth);
formatter.add("1*");
formatter.add("INC");
formatter.add("H--");
formatter.rowCompleted();
}
{
std::vector<RifEclipseOutputTableColumn> header = {
RifEclipseOutputTableColumn{"First Seg", LEFT},
RifEclipseOutputTableColumn{"Last Seg", LEFT},
RifEclipseOutputTableColumn{"Branch Num", LEFT},
RifEclipseOutputTableColumn{"Outlet Seg", LEFT},
RifEclipseOutputTableColumn{"Length", LEFT},
RifEclipseOutputTableColumn{"Depth Change", LEFT},
RifEclipseOutputTableColumn{"Diam", LEFT},
RifEclipseOutputTableColumn{"Rough", LEFT},
};
formatter.header(header);
}
size_t segmentNumber = 1;
{
WellSegmentLocation previousLocation = firstLocation;
formatter.comment("Main stem");
for (size_t i = 0; i < wellSegmentLocations.size(); ++i)
{
WellSegmentLocation& location = wellSegmentLocations[i];
location.segmentNumber = static_cast<int>(segmentNumber + 1);
formatter.comment(QString("Segment for sub %1").arg(location.subIndex));
formatter.add(location.segmentNumber).add(location.segmentNumber);
formatter.add(1); // All segments on main stem are branch 1
formatter.add(segmentNumber);
formatter.add(location.fishbonesSubs->locationOfSubs()[location.subIndex] - previousLocation.fishbonesSubs->locationOfSubs()[previousLocation.subIndex]);
formatter.add(location.trueVerticalDepth - previousLocation.trueVerticalDepth);
formatter.add(-1.0); // FIXME : Diam of main stem?
formatter.add(-1.0); // FIXME : Rough of main stem?
formatter.rowCompleted();
++segmentNumber;
previousLocation = location;
}
}
{
int branchNum = 1;
formatter.comment("Laterals");
formatter.comment("Diam: MSW - Tubing Radius");
formatter.comment("Rough: MSW - Open Hole Roughness Factor");
for (WellSegmentLocation& location : wellSegmentLocations)
{
for (WellSegmentLateral& lateral : location.laterals)
{
formatter.comment(QString("%1 : Sub index %2 - Lateral %3").arg(location.fishbonesSubs->name()).arg(location.subIndex).arg(lateral.lateralIndex));
lateral.branchNumber = ++branchNum;
std::vector<cvf::Vec3d> coords = location.fishbonesSubs->coordsForLateral(location.subIndex, lateral.lateralIndex);
std::vector<HexIntersectionInfo> intersections = findIntersections(caseToApply->eclipseCaseData(), coords);
filterIntersections(&intersections);
double length = 0;
double depth = 0;
cvf::Vec3d& startPoint = coords[0];
auto intersection = intersections.cbegin();
for (size_t i = 1; i < coords.size() && intersection != intersections.cend(); i++)
{
if (isPointBetween(startPoint, coords[i], intersection->m_intersectionPoint))
{
cvf::Vec3d between = intersection->m_intersectionPoint - startPoint;
length += between.length();
depth += intersection->m_intersectionPoint.z() - startPoint.z();
segmentNumber++;
formatter.add(segmentNumber).add(segmentNumber);
formatter.add(lateral.branchNumber);
formatter.add(location.segmentNumber);
formatter.add(length);
formatter.add(depth);
formatter.add(location.fishbonesSubs->tubingRadius());
formatter.add(location.fishbonesSubs->openHoleRoughnessFactor());
formatter.rowCompleted();
length = 0;
depth = 0;
startPoint = intersection->m_intersectionPoint;
++intersection;
}
else
{
cvf::Vec3d between = coords[i] - startPoint;
length += between.length();
depth += coords[i].z() - startPoint.z();
startPoint = coords[i];
}
}
}
}
}
formatter.tableCompleted();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicWellPathExportCompletionDataFeature::wellSegmentLocationOrdering(const WellSegmentLocation& first, const WellSegmentLocation& second)
{
return first.measuredDepth < second.measuredDepth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicWellPathExportCompletionDataFeature::isPointBetween(const cvf::Vec3d& pointA, const cvf::Vec3d& pointB, const cvf::Vec3d& needle)
{
cvf::Plane plane;
plane.setFromPointAndNormal(needle, pointB - pointA);
return plane.side(pointA) != plane.side(pointB);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicWellPathExportCompletionDataFeature::filterIntersections(std::vector<HexIntersectionInfo>* intersections)
{
// Erase intersections that are marked as entering
for (auto it = intersections->begin(); it != intersections->end();)
{
if (it->m_isIntersectionEntering)
{
it = intersections->erase(it);
}
else
{
++it;
}
}
}
std::vector<WellSegmentLocation> RicWellPathExportCompletionDataFeature::findWellSegmentLocations(RimWellPath* wellPath)
{
std::vector<WellSegmentLocation> wellSegmentLocations;
for (RimFishbonesMultipleSubs* subs : wellPath->fishbonesSubs)
{
for (size_t subIndex = 0; subIndex < subs->locationOfSubs().size(); ++subIndex)
{
double measuredDepth = subs->locationOfSubs()[subIndex];
cvf::Vec3d position = wellPath->wellPathGeometry()->interpolatedPointAlongWellPath(measuredDepth);
WellSegmentLocation location = WellSegmentLocation(subs, measuredDepth, -position.z(), subIndex);
for (size_t lateralIndex = 0; lateralIndex < subs->lateralLengths().size(); ++lateralIndex)
{
location.laterals.push_back(WellSegmentLateral(lateralIndex));
}
wellSegmentLocations.push_back(location);
}
}
std::sort(wellSegmentLocations.begin(), wellSegmentLocations.end(), wellSegmentLocationOrdering);
return wellSegmentLocations;
}