ResInsight/ApplicationCode/ReservoirDataModel/RigNumberOfFloodedPoreVolumesCalculator.cpp

362 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
#include "RiaPorosityModel.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigReservoirBuilderMock.h"
#include "RimEclipseCase.h"
#include "RimReservoirCellResultsStorage.h"
#include <vector>
#include <QString>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
const std::vector<QString> tracerNames)
{
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
RimReservoirCellResultsStorage* gridCellResults = caseToApply->results(RiaDefines::MATRIX_MODEL);
size_t scalarResultIndexPorv = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PORV");
const std::vector<double>* porvResults = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexPorv, 0));
std::vector<size_t> scalarResultIndexTracers;
for (QString tracerName : tracerNames)
{
scalarResultIndexTracers.push_back(gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, tracerName));
}
std::vector<std::vector<double> > summedTracersAtAllTimesteps;
//TODO: Option for Oil and Gas instead of water
size_t scalarResultIndexFlowrateI = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATI+");
size_t scalarResultIndexFlowrateJ = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+");
size_t scalarResultIndexFlowrateK = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATK+");
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps;
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps;
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps;
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
const std::vector<RigConnection> connections = nncData->connections();
//TODO: oil or gas flowrate
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps;
QString nncConnectionProperty = mainGrid->nncData()->propertyNameFluxWat();
std::vector<double> daysSinceSimulationStart = caseToApply->eclipseCaseData()->results(RiaDefines::MATRIX_MODEL)->daysSinceSimulationStart();
for (size_t timeStep = 0; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
const std::vector<double>* flowrateI = nullptr;
if (scalarResultIndexFlowrateI != cvf::UNDEFINED_SIZE_T)
{
flowrateI = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateI,
timeStep));
}
flowrateIatAllTimeSteps.push_back(flowrateI);
const std::vector<double>* flowrateJ = nullptr;
if (scalarResultIndexFlowrateJ != cvf::UNDEFINED_SIZE_T)
{
flowrateI = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateJ,
timeStep));
}
flowrateJatAllTimeSteps.push_back(flowrateJ);
const std::vector<double>* flowrateK = nullptr;
if (scalarResultIndexFlowrateK != cvf::UNDEFINED_SIZE_T)
{
flowrateK = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateK,
timeStep));
}
flowrateKatAllTimeSteps.push_back(flowrateK);
const std::vector<double>* connectionFlowrate = nncData->dynamicConnectionScalarResultByName(nncConnectionProperty,
timeStep);
flowrateNNCatAllTimeSteps.push_back(connectionFlowrate);
//sum all tracers at current timestep
std::vector<double> summedTracerValues(porvResults->size());
for (size_t tracerIndex : scalarResultIndexTracers)
{
if (tracerIndex != cvf::UNDEFINED_SIZE_T)
{
const std::vector<double>* tracerResult = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(tracerIndex, timeStep));
for (size_t i = 0; i < summedTracerValues.size(); i++)
{
summedTracerValues[i] += tracerResult->at(i);
}
}
}
summedTracersAtAllTimesteps.push_back(summedTracerValues);
}
calculate(mainGrid,
caseToApply,
daysSinceSimulationStart,
porvResults, flowrateIatAllTimeSteps,
flowrateJatAllTimeSteps,
flowrateKatAllTimeSteps,
connections,
flowrateNNCatAllTimeSteps,
summedTracersAtAllTimesteps);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumes()
{
return m_cumWinflowPVAllTimeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumesAtTimeStep(size_t timeStep)
{
return m_cumWinflowPVAllTimeSteps[timeStep];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::calculate(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<double> daysSinceSimulationStart,
const std::vector<double>* porvResults,
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps,
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps,
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps,
const std::vector<RigConnection> connections,
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps,
std::vector<std::vector<double> > summedTracersAtAllTimesteps)
{
size_t totalNumberOfCells = mainGrid->globalCellArray().size();
std::vector<std::vector<double>> cellQwInAtAllTimeSteps;
std::vector<double> cellQwInTimeStep0(totalNumberOfCells);
cellQwInAtAllTimeSteps.push_back(cellQwInTimeStep0);
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
std::vector<double> totoalFlowrateIntoCell(totalNumberOfCells);
if (flowrateIatAllTimeSteps[timeStep] != nullptr
&& flowrateJatAllTimeSteps[timeStep] != nullptr
&& flowrateKatAllTimeSteps[timeStep] != nullptr)
{
const std::vector<double>* flowrateI = flowrateIatAllTimeSteps[timeStep];
const std::vector<double>* flowrateJ = flowrateJatAllTimeSteps[timeStep];
const std::vector<double>* flowrateK = flowrateKatAllTimeSteps[timeStep];
distributeNeighbourCellFlow(mainGrid,
caseToApply,
summedTracersAtAllTimesteps[timeStep],
flowrateI,
flowrateJ,
flowrateK,
totoalFlowrateIntoCell);
}
const std::vector<double>* flowrateNNC = flowrateNNCatAllTimeSteps[timeStep];
distributeNNCflow(connections,
summedTracersAtAllTimesteps[timeStep],
flowrateNNC,
totoalFlowrateIntoCell);
std::vector<double> CellQwIn(totalNumberOfCells);
double daysSinceSimStartNow = daysSinceSimulationStart[timeStep];
double daysSinceSimStartLastTimeStep = daysSinceSimulationStart[timeStep - 1];
double deltaT = daysSinceSimStartNow - daysSinceSimStartLastTimeStep;
for (size_t globalCellIndex = 0; globalCellIndex < totalNumberOfCells; globalCellIndex++)
{
CellQwIn[globalCellIndex] = cellQwInAtAllTimeSteps[timeStep - 1][globalCellIndex]
+ (totoalFlowrateIntoCell[globalCellIndex]) * deltaT;
}
cellQwInAtAllTimeSteps.push_back(CellQwIn);
}
//Calculate number-of-cell-PV flooded
std::vector<double> cumWinflowPVTimeStep0(totalNumberOfCells);
m_cumWinflowPVAllTimeSteps.clear();
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPVTimeStep0);
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
std::vector<double> cumWinflowPV(totalNumberOfCells);
for (size_t globalCellIndex = 0; globalCellIndex < totalNumberOfCells; globalCellIndex++)
{
cumWinflowPV[globalCellIndex] = cellQwInAtAllTimeSteps[timeStep][globalCellIndex]
/ porvResults->at(globalCellIndex);
}
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPV);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNNCflow(std::vector<RigConnection> connections,
std::vector<double> summedTracerValues,
const std::vector<double>* flowrateNNC,
std::vector<double> &flowrateIntoCell)
{
for (size_t connectionIndex = 0; connectionIndex < connections.size(); connectionIndex++)
{
RigConnection connection = connections[connectionIndex];
double connectionValue = flowrateNNC->at(connectionIndex);
size_t cell1Index = connection.m_c1GlobIdx;
size_t cell2Index = connection.m_c2GlobIdx;
if (connectionValue > 0)
{
//Flow out of cell with cell1index, into cell cell2index
flowrateIntoCell[cell2Index] += connectionValue * summedTracerValues[cell1Index];
}
else if (connectionValue < 0)
{
//flow out of cell with cell2index, into cell cell1index
flowrateIntoCell[cell1Index] += connectionValue * summedTracerValues[cell2Index];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<double> summedTracerValues,
const std::vector<double>* flrWatResultI,
const std::vector<double>* flrWatResultJ,
const std::vector<double>* flrWatResultK,
std::vector<double> &totalFlowrateIntoCell)
{
for (size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++)
{
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
RigGridBase* hostGrid = cell.hostGrid();
size_t gridLocalCellIndex = cell.gridLocalCellIndex();
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
size_t cellResultIndex = actCellInfo->cellResultIndex(globalCellIndex);
size_t i, j, k;
hostGrid->ijkFromCellIndex(gridLocalCellIndex, &i, &j, &k);
if (i < (hostGrid->cellCountI()-1))
{
size_t gridLocalCellIndexPosINeighbour = hostGrid->cellIndexFromIJK(i + 1, j, k);
if (hostGrid->cell(gridLocalCellIndexPosINeighbour).subGrid() != NULL)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultI->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[gridLocalCellIndexPosINeighbour] += flrWatResultI->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultI->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[globalCellIndex] += (-1) * flrWatResultI->at(globalCellIndex) * summedTracerValues[gridLocalCellIndexPosINeighbour];
}
}
if (j < (hostGrid->cellCountJ()-1))
{
size_t gridLocalCellIndexPosJNeighbour = hostGrid->cellIndexFromIJK(i, j + 1, k);
if (hostGrid->cell(gridLocalCellIndexPosJNeighbour).subGrid() != NULL)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultJ->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[gridLocalCellIndexPosJNeighbour] += flrWatResultJ->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultJ->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[globalCellIndex] += flrWatResultJ->at(globalCellIndex) * summedTracerValues[gridLocalCellIndexPosJNeighbour];
}
}
if (k < (hostGrid->cellCountK()-1))
{
size_t gridLocalCellIndexPosKNeighbour = hostGrid->cellIndexFromIJK(i, j, k + 1);
if (hostGrid->cell(gridLocalCellIndexPosKNeighbour).subGrid() != NULL)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultK->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[gridLocalCellIndexPosKNeighbour] += flrWatResultK->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultK->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[globalCellIndex] += flrWatResultK->at(globalCellIndex) * summedTracerValues[gridLocalCellIndexPosKNeighbour];
}
}
}
}