ResInsight/ApplicationCode/ProjectDataModel/RimFractureModelWellLogCalculator.cpp
2020-11-03 16:07:25 +01:00

447 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFractureModelWellLogCalculator.h"
#include "RiaDefines.h"
#include "RiaFractureModelDefines.h"
#include "RiaInterpolationTools.h"
#include "RiaLogging.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseWellLogExtractor.h"
#include "RigResultAccessor.h"
#include "RigResultAccessorFactory.h"
#include "RigWellLogCurveData.h"
#include "RigWellPath.h"
#include "RimCase.h"
#include "RimEclipseCase.h"
#include "RimEclipseInputProperty.h"
#include "RimEclipseInputPropertyCollection.h"
#include "RimEclipseResultDefinition.h"
#include "RimFractureModel.h"
#include "RimFractureModelCalculator.h"
#include "RimFractureModelTemplate.h"
#include "RimLayerCurve.h"
#include "RimModeledWellPath.h"
#include "RimNonNetLayers.h"
#include "RimWellPath.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureModelWellLogCalculator::RimFractureModelWellLogCalculator( RimFractureModelCalculator* fractureModelCalculator )
: m_fractureModelCalculator( fractureModelCalculator )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModelWellLogCalculator::isMatching( RiaDefines::CurveProperty curveProperty ) const
{
std::vector<RiaDefines::CurveProperty> matching = {
RiaDefines::CurveProperty::FACIES,
RiaDefines::CurveProperty::POROSITY,
RiaDefines::CurveProperty::PERMEABILITY_X,
RiaDefines::CurveProperty::PERMEABILITY_Z,
RiaDefines::CurveProperty::INITIAL_PRESSURE,
RiaDefines::CurveProperty::PRESSURE,
RiaDefines::CurveProperty::NET_TO_GROSS,
};
return std::find( matching.begin(), matching.end(), curveProperty ) != matching.end();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModelWellLogCalculator::calculate( RiaDefines::CurveProperty curveProperty,
const RimFractureModel* fractureModel,
int timeStep,
std::vector<double>& values,
std::vector<double>& measuredDepthValues,
std::vector<double>& tvDepthValues,
double& rkbDiff ) const
{
RimEclipseCase* eclipseCase = fractureModel->eclipseCase();
if ( !eclipseCase )
{
return false;
}
if ( !fractureModel->thicknessDirectionWellPath() )
{
return false;
}
RigWellPath* wellPathGeometry = fractureModel->thicknessDirectionWellPath()->wellPathGeometry();
if ( !wellPathGeometry )
{
RiaLogging::error( "No well path geometry found for well log exctration" );
return false;
}
RigEclipseWellLogExtractor eclExtractor( eclipseCase->eclipseCaseData(), wellPathGeometry, "fracture model" );
measuredDepthValues = eclExtractor.cellIntersectionMDs();
tvDepthValues = eclExtractor.cellIntersectionTVDs();
rkbDiff = eclExtractor.wellPathGeometry()->rkbDiff();
RimEclipseResultDefinition eclipseResultDefinition;
eclipseResultDefinition.setEclipseCase( eclipseCase );
eclipseResultDefinition.setResultType( fractureModel->eclipseResultCategory( curveProperty ) );
eclipseResultDefinition.setPorosityModel( RiaDefines::PorosityModelType::MATRIX_MODEL );
eclipseResultDefinition.setResultVariable( fractureModel->eclipseResultVariable( curveProperty ) );
eclipseResultDefinition.loadResult();
if ( fractureModel->eclipseResultCategory( curveProperty ) != RiaDefines::ResultCatType::DYNAMIC_NATIVE ||
curveProperty == RiaDefines::CurveProperty::INITIAL_PRESSURE )
{
timeStep = 0;
}
cvf::ref<RigResultAccessor> resAcc =
RigResultAccessorFactory::createFromResultDefinition( eclipseCase->eclipseCaseData(),
0,
timeStep,
&eclipseResultDefinition );
if ( resAcc.notNull() )
{
eclExtractor.curveData( resAcc.p(), &values );
}
else
{
RiaLogging::error( QString( "No result found for %1" ).arg( eclipseResultDefinition.resultVariable() ) );
return false;
}
double overburdenHeight = fractureModel->overburdenHeight();
if ( overburdenHeight > 0.0 )
{
addOverburden( curveProperty, fractureModel, tvDepthValues, measuredDepthValues, values );
}
double underburdenHeight = fractureModel->underburdenHeight();
if ( underburdenHeight > 0.0 )
{
addUnderburden( curveProperty, fractureModel, tvDepthValues, measuredDepthValues, values );
}
if ( hasMissingValues( values ) )
{
if ( fractureModel->missingValueStrategy( curveProperty ) == RimFractureModel::MissingValueStrategy::DEFAULT_VALUE )
{
// Try to locate a backup accessor (e.g. PORO_1 for PORO)
cvf::ref<RigResultAccessor> backupResAcc = findMissingValuesAccessor( eclipseCase->eclipseCaseData(),
eclipseCase->inputPropertyCollection(),
0,
timeStep,
&eclipseResultDefinition );
if ( backupResAcc.notNull() )
{
RiaLogging::info( QString( "Reading missing values from input properties for %1." )
.arg( eclipseResultDefinition.resultVariable() ) );
std::vector<double> replacementValues;
eclExtractor.curveData( backupResAcc.p(), &replacementValues );
double overburdenHeight = fractureModel->overburdenHeight();
if ( overburdenHeight > 0.0 )
{
double defaultOverburdenValue = std::numeric_limits<double>::infinity();
if ( fractureModel->burdenStrategy( curveProperty ) == RimFractureModel::BurdenStrategy::DEFAULT_VALUE )
{
defaultOverburdenValue = fractureModel->getDefaultForMissingOverburdenValue( curveProperty );
}
replacementValues.insert( replacementValues.begin(), defaultOverburdenValue );
replacementValues.insert( replacementValues.begin(), defaultOverburdenValue );
}
double underburdenHeight = fractureModel->underburdenHeight();
if ( underburdenHeight > 0.0 )
{
double defaultUnderburdenValue = std::numeric_limits<double>::infinity();
if ( fractureModel->burdenStrategy( curveProperty ) == RimFractureModel::BurdenStrategy::DEFAULT_VALUE )
{
defaultUnderburdenValue = fractureModel->getDefaultForMissingUnderburdenValue( curveProperty );
}
replacementValues.push_back( defaultUnderburdenValue );
replacementValues.push_back( defaultUnderburdenValue );
}
replaceMissingValues( values, replacementValues );
}
// If the backup accessor is not found, or does not provide all the missing values:
// use default value from the fracture model
if ( !backupResAcc.notNull() || hasMissingValues( values ) )
{
RiaLogging::info( QString( "Using default value for %1" ).arg( eclipseResultDefinition.resultVariable() ) );
double defaultValue = fractureModel->getDefaultForMissingValue( curveProperty );
replaceMissingValues( values, defaultValue );
}
}
else if ( fractureModel->missingValueStrategy( curveProperty ) ==
RimFractureModel::MissingValueStrategy::LINEAR_INTERPOLATION )
{
RiaLogging::info(
QString( "Interpolating missing values for %1" ).arg( eclipseResultDefinition.resultVariable() ) );
RiaInterpolationTools::interpolateMissingValues( measuredDepthValues, values );
}
else
{
// Get the missing data from other curve
RiaDefines::CurveProperty replacementProperty =
fractureModel->getDefaultPropertyForMissingValues( curveProperty );
std::vector<double> initialValues;
std::vector<double> initialMds;
std::vector<double> initialTvds;
double initialRkbDiff = -1.0;
calculate( replacementProperty, fractureModel, timeStep, initialValues, initialMds, initialTvds, initialRkbDiff );
if ( initialValues.empty() )
{
RiaLogging::error( QString( "Empty replacement data found for fracture model curve." ) );
return false;
}
CVF_ASSERT( values.size() == initialValues.size() );
replaceMissingValues( values, initialValues );
}
}
if ( fractureModel->isScaledByNetToGross( curveProperty ) )
{
std::vector<double> netToGross =
m_fractureModelCalculator->extractValues( RiaDefines::CurveProperty::NET_TO_GROSS, timeStep );
scaleByNetToGross( fractureModel, netToGross, values );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModelWellLogCalculator::hasMissingValues( const std::vector<double>& values )
{
for ( double v : values )
{
if ( v == std::numeric_limits<double>::infinity() )
{
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModelWellLogCalculator::replaceMissingValues( std::vector<double>& values, double defaultValue )
{
for ( double& v : values )
{
if ( v == std::numeric_limits<double>::infinity() )
{
v = defaultValue;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModelWellLogCalculator::replaceMissingValues( std::vector<double>& values,
const std::vector<double>& replacementValues )
{
CVF_ASSERT( values.size() == replacementValues.size() );
for ( size_t i = 0; i < values.size(); i++ )
{
if ( values[i] == std::numeric_limits<double>::infinity() )
{
values[i] = replacementValues[i];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigResultAccessor>
RimFractureModelWellLogCalculator::findMissingValuesAccessor( RigEclipseCaseData* caseData,
RimEclipseInputPropertyCollection* inputPropertyCollection,
int gridIndex,
int timeStepIndex,
RimEclipseResultDefinition* eclipseResultDefinition ) const
{
QString resultName = eclipseResultDefinition->resultVariable();
for ( RimEclipseInputProperty* inputProperty : inputPropertyCollection->inputProperties() )
{
// Look for input properties starting with the same name as result definition
if ( inputProperty && inputProperty->resultName().startsWith( resultName ) )
{
RiaLogging::info(
QString( "Found missing values result for %1: %2" ).arg( resultName ).arg( inputProperty->resultName() ) );
RigEclipseResultAddress resultAddress( RiaDefines::ResultCatType::INPUT_PROPERTY, inputProperty->resultName() );
caseData->results( eclipseResultDefinition->porosityModel() )->ensureKnownResultLoaded( resultAddress );
cvf::ref<RigResultAccessor> resAcc =
RigResultAccessorFactory::createFromResultAddress( caseData,
gridIndex,
eclipseResultDefinition->porosityModel(),
timeStepIndex,
resultAddress );
return resAcc;
}
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModelWellLogCalculator::addOverburden( RiaDefines::CurveProperty curveProperty,
const RimFractureModel* fractureModel,
std::vector<double>& tvDepthValues,
std::vector<double>& measuredDepthValues,
std::vector<double>& values ) const
{
if ( !values.empty() )
{
double overburdenHeight = fractureModel->overburdenHeight();
double tvdOverburdenBottom = tvDepthValues[0];
double tvdOverburdenTop = tvdOverburdenBottom - overburdenHeight;
double overburdenTopValue = std::numeric_limits<double>::infinity();
double overburdenBottomValue = std::numeric_limits<double>::infinity();
if ( fractureModel->burdenStrategy( curveProperty ) == RimFractureModel::BurdenStrategy::DEFAULT_VALUE )
{
overburdenTopValue = fractureModel->getDefaultForMissingOverburdenValue( curveProperty );
overburdenBottomValue = overburdenTopValue;
}
else
{
double gradient = fractureModel->getOverburdenGradient( curveProperty );
overburdenBottomValue = values[0];
overburdenTopValue = overburdenBottomValue + gradient * -overburdenHeight;
}
// Prepend the new "fake" depth for start of overburden
tvDepthValues.insert( tvDepthValues.begin(), tvdOverburdenBottom );
tvDepthValues.insert( tvDepthValues.begin(), tvdOverburdenTop );
// TODO: this is not always correct
double mdTop = measuredDepthValues[0];
measuredDepthValues.insert( measuredDepthValues.begin(), mdTop );
measuredDepthValues.insert( measuredDepthValues.begin(), mdTop - overburdenHeight );
values.insert( values.begin(), overburdenBottomValue );
values.insert( values.begin(), overburdenTopValue );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModelWellLogCalculator::addUnderburden( RiaDefines::CurveProperty curveProperty,
const RimFractureModel* fractureModel,
std::vector<double>& tvDepthValues,
std::vector<double>& measuredDepthValues,
std::vector<double>& values ) const
{
if ( !values.empty() )
{
size_t lastIndex = tvDepthValues.size() - 1;
double underburdenHeight = fractureModel->underburdenHeight();
double tvdUnderburdenTop = tvDepthValues[lastIndex];
double tvdUnderburdenBottom = tvdUnderburdenTop + underburdenHeight;
double underburdenTopValue = std::numeric_limits<double>::infinity();
double underburdenBottomValue = std::numeric_limits<double>::infinity();
if ( fractureModel->burdenStrategy( curveProperty ) == RimFractureModel::BurdenStrategy::DEFAULT_VALUE )
{
underburdenTopValue = fractureModel->getDefaultForMissingUnderburdenValue( curveProperty );
underburdenBottomValue = underburdenTopValue;
}
else
{
double gradient = fractureModel->getUnderburdenGradient( curveProperty );
underburdenTopValue = values[lastIndex];
underburdenBottomValue = underburdenTopValue + gradient * underburdenHeight;
}
// Append the new "fake" depth for start of underburden
tvDepthValues.push_back( tvdUnderburdenTop );
tvDepthValues.push_back( tvdUnderburdenBottom );
// Append the new "fake" md
// TODO: check if this is correct???
double mdBottom = measuredDepthValues[lastIndex];
measuredDepthValues.push_back( mdBottom );
measuredDepthValues.push_back( mdBottom + underburdenHeight );
values.push_back( underburdenTopValue );
values.push_back( underburdenBottomValue );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModelWellLogCalculator::scaleByNetToGross( const RimFractureModel* fractureModel,
const std::vector<double>& netToGross,
std::vector<double>& values )
{
if ( netToGross.size() != values.size() )
{
RiaLogging::error( QString( "Different sizes for net to gross calculation." ) );
return;
}
double cutoff = 1.0;
if ( fractureModel->fractureModelTemplate() && fractureModel->fractureModelTemplate()->nonNetLayers() &&
fractureModel->fractureModelTemplate()->nonNetLayers()->isChecked() )
{
cutoff = fractureModel->fractureModelTemplate()->nonNetLayers()->cutOff();
}
for ( size_t i = 0; i < values.size(); i++ )
{
double ntg = netToGross[i];
if ( ntg <= cutoff )
{
values[i] = ntg * values[i];
}
}
}