ResInsight/ApplicationCode/ProjectDataModel/RimEclipseStatisticsCaseEvaluator.cpp

343 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimEclipseStatisticsCaseEvaluator.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigEclipseResultInfo.h"
#include "RigResultModifier.h"
#include "RigResultModifierFactory.h"
#include "RigStatisticsMath.h"
#include "RimIdenticalGridCaseGroup.h"
#include "RimReservoirCellResultsStorage.h"
#include "cafProgressInfo.h"
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::addNamedResult(RigCaseCellResultsData* destinationCellResults, RiaDefines::ResultCatType resultType, const QString& resultName, size_t activeUnionCellCount)
{
// Use time step dates from first result in first source case
CVF_ASSERT(m_sourceCases.size() > 0);
std::vector<RigEclipseTimeStepInfo> sourceTimeStepInfos = m_sourceCases[0]->results(RiaDefines::MATRIX_MODEL)->timeStepInfos(0);
size_t destinationScalarResultIndex = destinationCellResults->findOrCreateScalarResultIndex(resultType, resultName, true);
CVF_ASSERT(destinationScalarResultIndex != cvf::UNDEFINED_SIZE_T);
destinationCellResults->setTimeStepInfos(destinationScalarResultIndex, sourceTimeStepInfos);
std::vector< std::vector<double> >& dataValues = destinationCellResults->cellScalarResults(destinationScalarResultIndex);
dataValues.resize(sourceTimeStepInfos.size());
// Initializes the size of the destination dataset to active union cell count
for (size_t i = 0; i < sourceTimeStepInfos.size(); i++)
{
dataValues[i].resize(activeUnionCellCount, HUGE_VAL);
}
}
QString createResultNameMin(const QString& resultName) { return resultName + "_MIN"; }
QString createResultNameMax(const QString& resultName) { return resultName + "_MAX"; }
QString createResultNameSum(const QString& resultName) { return resultName + "_SUM"; }
QString createResultNameMean(const QString& resultName) { return resultName + "_MEAN"; }
QString createResultNameDev(const QString& resultName) { return resultName + "_DEV"; }
QString createResultNameRange(const QString& resultName) { return resultName + "_RANGE"; }
QString createResultNamePVal(const QString& resultName, double pValPos) { return resultName + "_P_" + QString::number(pValPos); }
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::evaluateForResults(const QList<ResSpec>& resultSpecification)
{
CVF_ASSERT(m_destinationCase);
// First build the destination result data structures to receive the statistics
for (int i = 0; i < resultSpecification.size(); i++)
{
RiaDefines::PorosityModelType poroModel = resultSpecification[i].m_poroModel;
RiaDefines::ResultCatType resultType = resultSpecification[i].m_resType;
QString resultName = resultSpecification[i].m_resVarName;
size_t activeCellCount = m_destinationCase->activeCellInfo(poroModel)->reservoirActiveCellCount();
RigCaseCellResultsData* destCellResultsData = m_destinationCase->results(poroModel);
// Placeholder data used to be created here,
// this is now moved to RimIdenticalGridCaseGroup::loadMainCaseAndActiveCellInfo()
// Create new result data structures to contain the statistical values
std::vector<QString> statisticalResultNames;
statisticalResultNames.push_back(createResultNameMin(resultName));
statisticalResultNames.push_back(createResultNameMax(resultName));
statisticalResultNames.push_back(createResultNameSum(resultName));
statisticalResultNames.push_back(createResultNameMean(resultName));
statisticalResultNames.push_back(createResultNameDev(resultName));
statisticalResultNames.push_back(createResultNameRange(resultName));
if (m_statisticsConfig.m_calculatePercentiles)
{
statisticalResultNames.push_back(createResultNamePVal(resultName, m_statisticsConfig.m_pMinPos));
statisticalResultNames.push_back(createResultNamePVal(resultName, m_statisticsConfig.m_pMidPos));
statisticalResultNames.push_back(createResultNamePVal(resultName, m_statisticsConfig.m_pMaxPos));
}
if (activeCellCount > 0)
{
for (size_t i = 0; i < statisticalResultNames.size(); ++i)
{
addNamedResult(destCellResultsData, resultType, statisticalResultNames[i], activeCellCount);
}
}
}
// Start the loop that calculates the statistics
caf::ProgressInfo progressInfo(m_timeStepIndices.size(), "Computing Statistics");
for (size_t timeIndicesIdx = 0; timeIndicesIdx < m_timeStepIndices.size(); timeIndicesIdx++)
{
size_t timeStepIdx = m_timeStepIndices[timeIndicesIdx];
for (size_t gridIdx = 0; gridIdx < m_destinationCase->gridCount(); gridIdx++)
{
RigGridBase* grid = m_destinationCase->grid(gridIdx);
for (int resSpecIdx = 0; resSpecIdx < resultSpecification.size(); resSpecIdx++)
{
RiaDefines::PorosityModelType poroModel = resultSpecification[resSpecIdx].m_poroModel;
RiaDefines::ResultCatType resultType = resultSpecification[resSpecIdx].m_resType;
QString resultName = resultSpecification[resSpecIdx].m_resVarName;
size_t activeCellCount = m_destinationCase->activeCellInfo(poroModel)->reservoirActiveCellCount();
if (activeCellCount == 0) continue;
RigCaseCellResultsData* destCellResultsData = m_destinationCase->results(poroModel);
size_t dataAccessTimeStepIndex = timeStepIdx;
// Always evaluate statistics once, and always use time step index zero
if (resultType == RiaDefines::STATIC_NATIVE)
{
if (timeIndicesIdx > 0) continue;
dataAccessTimeStepIndex = 0;
}
// Build data access objects for source scalar results
cvf::Collection<RigResultAccessor> sourceDataAccessList;
for (size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++)
{
RimEclipseCase* sourceCase = m_sourceCases.at(caseIdx);
// Trigger loading of dataset
sourceCase->results(poroModel)->findOrLoadScalarResultForTimeStep(resultType, resultName, dataAccessTimeStepIndex);
cvf::ref<RigResultAccessor> resultAccessor = RigResultAccessorFactory::createFromNameAndType(sourceCase->eclipseCaseData(), gridIdx, poroModel, dataAccessTimeStepIndex, resultName, resultType);
if (resultAccessor.notNull())
{
sourceDataAccessList.push_back(resultAccessor.p());
}
}
// Build data access objects for destination scalar results
// Find the created result container, if any, and put its resultAccessor into the enum indexed destination collection
cvf::Collection<RigResultModifier> destinationDataAccessList;
std::vector<QString> statisticalResultNames(STAT_PARAM_COUNT);
statisticalResultNames[MIN] = createResultNameMin(resultName);
statisticalResultNames[MAX] = createResultNameMax(resultName);
statisticalResultNames[SUM] = createResultNameSum(resultName);
statisticalResultNames[RANGE] = createResultNameRange(resultName);
statisticalResultNames[MEAN] = createResultNameMean(resultName);
statisticalResultNames[STDEV] = createResultNameDev(resultName);
statisticalResultNames[PMIN] = createResultNamePVal(resultName, m_statisticsConfig.m_pMinPos);
statisticalResultNames[PMID] = createResultNamePVal(resultName, m_statisticsConfig.m_pMidPos);
statisticalResultNames[PMAX] = createResultNamePVal(resultName, m_statisticsConfig.m_pMaxPos);
for (size_t stIdx = 0; stIdx < statisticalResultNames.size(); ++stIdx)
{
size_t scalarResultIndex = destCellResultsData->findScalarResultIndex(resultType, statisticalResultNames[stIdx]);
cvf::ref<RigResultModifier> resultModifier = RigResultModifierFactory::createResultModifier(m_destinationCase, grid->gridIndex(), poroModel, dataAccessTimeStepIndex, scalarResultIndex);
destinationDataAccessList.push_back(resultModifier.p());
}
std::vector<double> statParams(STAT_PARAM_COUNT, HUGE_VAL);
std::vector<double> values(sourceDataAccessList.size(), HUGE_VAL);
// Loop over the cells in the grid, get the case values, and calculate the cell statistics
#pragma omp parallel for schedule(dynamic) firstprivate(statParams, values)
for (int cellIdx = 0; static_cast<size_t>(cellIdx) < grid->cellCount(); cellIdx++)
{
size_t reservoirCellIndex = grid->reservoirCellIndex(cellIdx);
if (m_destinationCase->activeCellInfo(poroModel)->isActive(reservoirCellIndex))
{
// Extract the cell values from each of the cases and assemble them into one vector
bool foundAnyValidValues = false;
for (size_t caseIdx = 0; caseIdx < sourceDataAccessList.size(); caseIdx++)
{
double val = sourceDataAccessList.at(caseIdx)->cellScalar(cellIdx);
// Replace huge_val with zero in the statistical computation for the following case
if (m_useZeroAsInactiveCellValue || resultName.toUpper() == "ACTNUM")
{
if (m_identicalGridCaseGroup->unionOfActiveCells(poroModel)->isActive(reservoirCellIndex) &&
val == HUGE_VAL)
{
val = 0.0;
}
}
values[caseIdx] = val;
if (val != HUGE_VAL)
{
foundAnyValidValues = true;
}
}
// Do the real statistics calculations
if (foundAnyValidValues)
{
RigStatisticsMath::calculateBasicStatistics(values, &statParams[MIN], &statParams[MAX], &statParams[SUM], &statParams[RANGE], &statParams[MEAN], &statParams[STDEV]);
// Calculate percentiles
if (m_statisticsConfig.m_calculatePercentiles )
{
if (m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::NEAREST_OBSERVATION)
{
std::vector<double> pValPoss;
pValPoss.push_back(m_statisticsConfig.m_pMinPos);
pValPoss.push_back(m_statisticsConfig.m_pMidPos);
pValPoss.push_back(m_statisticsConfig.m_pMaxPos);
std::vector<double> pVals = RigStatisticsMath::calculateNearestRankPercentiles(values, pValPoss);
statParams[PMIN] = pVals[0];
statParams[PMID] = pVals[1];
statParams[PMAX] = pVals[2];
}
else if (m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::HISTOGRAM_ESTIMATED)
{
std::vector<size_t> histogram;
RigHistogramCalculator histCalc(statParams[MIN], statParams[MAX], 100, &histogram);
histCalc.addData(values);
statParams[PMIN] = histCalc.calculatePercentil(m_statisticsConfig.m_pMinPos);
statParams[PMID] = histCalc.calculatePercentil(m_statisticsConfig.m_pMidPos);
statParams[PMAX] = histCalc.calculatePercentil(m_statisticsConfig.m_pMaxPos);
}
else if (m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::INTERPOLATED_OBSERVATION)
{
std::vector<double> pValPoss;
pValPoss.push_back(m_statisticsConfig.m_pMinPos);
pValPoss.push_back(m_statisticsConfig.m_pMidPos);
pValPoss.push_back(m_statisticsConfig.m_pMaxPos);
std::vector<double> pVals = RigStatisticsMath::calculateInterpolatedPercentiles(values, pValPoss);
statParams[PMIN] = pVals[0];
statParams[PMID] = pVals[1];
statParams[PMAX] = pVals[2];
}
else
{
CVF_ASSERT(false);
}
}
}
// Set the results into the results data structures
for (size_t stIdx = 0; stIdx < statParams.size(); ++stIdx)
{
if (destinationDataAccessList[stIdx].notNull())
{
destinationDataAccessList[stIdx]->setCellScalar(cellIdx, statParams[stIdx]);
}
}
}
}
}
}
// When one time step is completed, free memory and clean up
// Microsoft note: On Windows, the maximum number of files open at the same time is 512
// http://msdn.microsoft.com/en-us/library/kdfaxaay%28vs.71%29.aspx
for (size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++)
{
RimEclipseCase* eclipseCase = m_sourceCases.at(caseIdx);
if (!eclipseCase->reservoirViews.size())
{
eclipseCase->results(RiaDefines::MATRIX_MODEL)->freeAllocatedResultsData();
eclipseCase->results(RiaDefines::FRACTURE_MODEL)->freeAllocatedResultsData();
}
}
progressInfo.setProgress(timeIndicesIdx);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimEclipseStatisticsCaseEvaluator::RimEclipseStatisticsCaseEvaluator(const std::vector<RimEclipseCase*>& sourceCases, const std::vector<size_t>& timeStepIndices, const RimStatisticsConfig& statisticsConfig, RigEclipseCaseData* destinationCase, RimIdenticalGridCaseGroup* identicalGridCaseGroup)
: m_sourceCases(sourceCases),
m_statisticsConfig(statisticsConfig),
m_destinationCase(destinationCase),
m_reservoirCellCount(0),
m_timeStepIndices(timeStepIndices),
m_identicalGridCaseGroup(identicalGridCaseGroup),
m_useZeroAsInactiveCellValue(false)
{
if (sourceCases.size() > 0)
{
m_reservoirCellCount = sourceCases[0]->eclipseCaseData()->mainGrid()->globalCellArray().size();
}
CVF_ASSERT(m_destinationCase);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::useZeroAsValueForInActiveCellsBasedOnUnionOfActiveCells()
{
m_useZeroAsInactiveCellValue = true;
}