ResInsight/ApplicationLibCode/FileInterface/RifReaderOpmRft.cpp
Magne Sjaastad 46b364d0b0
RFT file improvements
* Guard null pointer access
* Delay open of RFT files until data is requested
When opening ensemble summary cases, the opening of RFT files can take some time. Avoid this by delaying the file open operation.

* Fix infinite update loop for RFT plots
* Avoid moving the tracker line when clicking in the plot
2022-11-11 10:07:27 +01:00

1010 lines
38 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2022- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifReaderOpmRft.h"
#include "RiaLogging.h"
#include "RiaQDateTimeTools.h"
#include "RiaRftDefines.h"
#include "RiaStdStringTools.h"
#include "RiaOpmParserTools.h"
#include "opm/input/eclipse/Parser/Parser.hpp"
#include "opm/input/eclipse/Parser/ParserKeywords/W.hpp"
#include "opm/io/eclipse/ERft.hpp"
#include "cafAssert.h"
#include "cafVecIjk.h"
#include <iomanip>
#include <iostream>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifReaderOpmRft::RifReaderOpmRft( const QString& fileName, const QString& dataDeckFileName )
: m_segmentResultItemCount( 0 )
, m_connectionResultItemCount( 0 )
, m_fileName( fileName )
, m_dataDeckFileName( dataDeckFileName )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifReaderOpmRft::RifReaderOpmRft( const QString& fileName )
: m_segmentResultItemCount( 0 )
, m_connectionResultItemCount( 0 )
, m_fileName( fileName )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RifEclipseRftAddress> RifReaderOpmRft::eclipseRftAddresses()
{
openFiles();
return m_addresses;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::values( const RifEclipseRftAddress& rftAddress, std::vector<double>* values )
{
openFiles();
auto wellName = rftAddress.wellName().toStdString();
auto resultName = rftAddress.segmentResultName().toStdString();
auto qDate = rftAddress.timeStep().date();
int y = qDate.year();
int m = qDate.month();
int d = qDate.day();
if ( rftAddress.wellLogChannel() == RifEclipseRftAddress::RftWellLogChannelType::SEGMENT_VALUES )
{
auto key = std::make_pair( wellName, RftDate{ y, m, d } );
auto segment = m_rftWellDateSegments[key];
if ( rftAddress.segmentResultName() == RiaDefines::segmentNumberResultName() )
{
auto data = segment.topology();
auto indices =
segment.segmentIndicesForBranchIndex( rftAddress.segmentBranchIndex(), rftAddress.segmentBranchType() );
for ( const auto& i : indices )
{
CAF_ASSERT( i < data.size() );
values->push_back( data[i].segNo() );
}
return;
}
else if ( rftAddress.segmentResultName() == RiaDefines::segmentBranchNumberResultName() )
{
auto branchNumbers = segment.tubingBranchIds();
for ( const auto& branchNumber : branchNumbers )
{
values->push_back( branchNumber );
}
return;
}
}
if ( resultName.empty() )
{
resultName = RifReaderOpmRft::resultNameFromChannelType( rftAddress.wellLogChannel() );
}
try
{
std::vector<float> data = resultAsFloat( resultName, wellName, y, m, d );
if ( !data.empty() )
{
if ( rftAddress.wellLogChannel() == RifEclipseRftAddress::RftWellLogChannelType::SEGMENT_VALUES )
{
auto key = std::make_pair( wellName, RftDate{ y, m, d } );
auto segment = m_rftWellDateSegments[key];
if ( data.size() == m_connectionResultItemCount )
{
// Connection results with size equal to length of result CONSEGNO. CONSEGNO defines the segment
// numbers the connection is connected to.
const std::string consegResultName = "CONSEGNO";
auto connnectionSegmentNumbers = m_opm_rft->getRft<int>( consegResultName, wellName, y, m, d );
if ( connnectionSegmentNumbers.empty() ) return;
auto segmentNumbers = segment.segmentNumbersForBranchIndex( rftAddress.segmentBranchIndex(),
rftAddress.segmentBranchType() );
size_t resultDataIndex = 0;
for ( int segmentNumber : segmentNumbers )
{
if ( std::find( connnectionSegmentNumbers.begin(), connnectionSegmentNumbers.end(), segmentNumber ) !=
connnectionSegmentNumbers.end() )
{
values->push_back( data[resultDataIndex++] );
}
else
{
// The number of values must be equal to the number of segments, use infinity for segments
// with no data
values->push_back( std::numeric_limits<double>::infinity() );
}
}
}
else
{
auto indices = segment.segmentIndicesForBranchIndex( rftAddress.segmentBranchIndex(),
rftAddress.segmentBranchType() );
for ( const auto& i : indices )
{
CAF_ASSERT( i < data.size() );
values->push_back( data[i] );
}
}
if ( resultName == "CONFAC" || resultName == "CONKH" )
{
// Replace undefined values with zero to improve readability of plots
std::replace( values->begin(), values->end(), std::numeric_limits<double>::infinity(), 0.0 );
}
}
else
{
values->insert( values->end(), data.begin(), data.end() );
}
}
}
catch ( ... )
{
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<QDateTime> RifReaderOpmRft::availableTimeSteps( const QString& wellName )
{
openFiles();
std::set<QDateTime> timeSteps;
for ( const auto& address : m_addresses )
{
if ( address.wellName() == wellName )
{
timeSteps.insert( address.timeStep() );
}
}
return timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<QDateTime>
RifReaderOpmRft::availableTimeSteps( const QString& wellName,
const RifEclipseRftAddress::RftWellLogChannelType& wellLogChannelName )
{
openFiles();
if ( wellLogChannelName == RifEclipseRftAddress::RftWellLogChannelType::SEGMENT_VALUES )
return m_rftSegmentTimeSteps;
std::set<QDateTime> timeSteps;
for ( const auto& address : m_addresses )
{
if ( address.wellName() == wellName && address.wellLogChannel() == wellLogChannelName )
{
timeSteps.insert( address.timeStep() );
}
}
return timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<QDateTime>
RifReaderOpmRft::availableTimeSteps( const QString& wellName,
const std::set<RifEclipseRftAddress::RftWellLogChannelType>& relevantChannels )
{
openFiles();
std::set<QDateTime> timeSteps;
for ( const auto& address : m_addresses )
{
if ( address.wellName() == wellName && relevantChannels.count( address.wellLogChannel() ) )
{
timeSteps.insert( address.timeStep() );
}
}
return timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RifEclipseRftAddress::RftWellLogChannelType> RifReaderOpmRft::availableWellLogChannels( const QString& wellName )
{
openFiles();
std::set<RifEclipseRftAddress::RftWellLogChannelType> types;
for ( const auto& a : m_addresses )
{
if ( ( a.wellName() == wellName ) && ( a.wellLogChannel() != RifEclipseRftAddress::RftWellLogChannelType::NONE ) )
{
types.insert( a.wellLogChannel() );
}
}
return types;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<QString> RifReaderOpmRft::wellNames()
{
openFiles();
return m_wellNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::cellIndices( const RifEclipseRftAddress& rftAddress, std::vector<caf::VecIjk>* indices )
{
openFiles();
auto wellName = rftAddress.wellName().toStdString();
auto date = rftAddress.timeStep().date();
int y = date.year();
int m = date.month();
int d = date.day();
try
{
auto resultNameI = "CONIPOS";
auto dataI = m_opm_rft->getRft<int>( resultNameI, wellName, y, m, d );
auto resultNameJ = "CONJPOS";
auto dataJ = m_opm_rft->getRft<int>( resultNameJ, wellName, y, m, d );
auto resultNameK = "CONKPOS";
auto dataK = m_opm_rft->getRft<int>( resultNameK, wellName, y, m, d );
if ( !dataI.empty() && ( dataI.size() == dataJ.size() ) && ( dataI.size() == dataK.size() ) )
{
for ( size_t n = 0; n < dataI.size(); n++ )
{
// NB: Transform to zero-based cell indices
indices->push_back( caf::VecIjk( dataI[n] - 1, dataJ[n] - 1, dataK[n] - 1 ) );
}
}
}
catch ( ... )
{
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::map<int, int> RifReaderOpmRft::branchIdsAndOneBasedIndices( const QString& wellName,
const QDateTime& timeStep,
RiaDefines::RftBranchType branchType )
{
int y = timeStep.date().year();
int m = timeStep.date().month();
int d = timeStep.date().day();
auto key = std::make_pair( wellName.toStdString(), RftDate{ y, m, d } );
if ( m_rftWellDateSegments.count( key ) > 0 )
{
auto segment = m_rftWellDateSegments[key];
return segment.branchIdsAndOneBasedBranchIndices( branchType );
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifRftSegment RifReaderOpmRft::segmentForWell( const QString& wellName, const QDateTime& timeStep )
{
openFiles();
int y = timeStep.date().year();
int m = timeStep.date().month();
int d = timeStep.date().day();
auto key = std::make_pair( wellName.toStdString(), RftDate{ y, m, d } );
if ( m_rftWellDateSegments.count( key ) > 0 )
{
return m_rftWellDateSegments[key];
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::readWseglink( const std::string& filePath )
{
if ( filePath.empty() ) return;
QString text = QString( "Scanning for WSEGLINK data in %1\n" ).arg( QString::fromStdString( filePath ) );
m_wseglink = RiaOpmParserTools::extractWseglink( filePath );
if ( !m_wseglink.empty() )
{
text += "Imported WSEGLINK data from well(s):\n";
for ( auto [wellName, links] : m_wseglink )
{
text += " " + QString::fromStdString( wellName ) + "\n";
}
}
else
{
text += QString( " No WSEGLINK data found." );
}
RiaLogging::info( text );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::openFiles( const QString& fileName, const QString& dataDeckFileName )
{
try
{
m_opm_rft = std::make_unique<Opm::EclIO::ERft>( fileName.toStdString() );
readWseglink( dataDeckFileName.toStdString() );
buildMetaData();
}
catch ( const std::exception& e )
{
RiaLogging::error( QString( "Failed to open RFT file %1\n%2" ).arg( fileName ).arg( e.what() ) );
}
catch ( ... )
{
RiaLogging::error( QString( "Failed to open RFT file %1" ).arg( fileName ) );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::buildMetaData()
{
// TODO: Assert better than return?
if ( !isOpen() ) return;
importWellNames();
auto reports = m_opm_rft->listOfRftReports();
for ( const auto& [wellName, reportDate, reportTime] : reports )
{
auto results = m_opm_rft->listOfRftArrays( wellName, reportDate );
for ( const auto& [name, arrayType, size] : results )
{
const auto& [y, m, d] = reportDate;
auto dt = RiaQDateTimeTools::createUtcDateTime( QDate( y, m, d ) );
auto channelType = identifyChannelType( name );
if ( channelType != RifEclipseRftAddress::RftWellLogChannelType::NONE )
{
auto adr = RifEclipseRftAddress::createAddress( QString::fromStdString( wellName ), dt, channelType );
m_addresses.insert( adr );
}
}
}
buildSegmentData();
// Create segment result addresses
for ( const auto& segmentWellData : m_rftWellDateSegments )
{
auto [wellName, reportDate] = segmentWellData.first;
auto segmentData = segmentWellData.second;
const auto& [y, m, d] = reportDate;
auto dt = RiaQDateTimeTools::createUtcDateTime( QDate( y, m, d ) );
m_rftSegmentTimeSteps.insert( dt );
auto resultNameAndSizes = segmentData.resultNameAndSize();
for ( const auto& [name, arrayType, size] : resultNameAndSizes )
{
auto adr = RifEclipseRftAddress::createSegmentAddress( QString::fromStdString( wellName ),
dt,
QString::fromStdString( name ) );
m_addresses.insert( adr );
}
auto adr = RifEclipseRftAddress::createSegmentAddress( QString::fromStdString( wellName ),
dt,
RiaDefines::segmentNumberResultName() );
m_addresses.insert( adr );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::buildSegmentData()
{
m_rftWellDateSegments.clear();
auto wellNames = m_opm_rft->listOfWells();
auto dates = m_opm_rft->listOfdates();
for ( const auto& wellName : wellNames )
{
for ( const auto& date : dates )
{
std::vector<RifRftSegmentData> segmentsForWellDate;
std::vector<int> segnxt = importWellData( wellName, "SEGNXT", date );
std::vector<int> segbrno = importWellData( wellName, "SEGBRNO", date );
std::vector<int> brnstValues = importWellData( wellName, "BRNST", date );
std::vector<int> brnenValues = importWellData( wellName, "BRNEN", date );
if ( segnxt.empty() ) continue;
if ( segnxt.size() != segbrno.size() ) continue;
if ( brnenValues.empty() || brnstValues.empty() ) continue;
std::vector<int> segNo;
for ( size_t i = 0; i < segnxt.size(); i++ )
{
int branchIndex = segbrno[i] - 1;
int nextBranchIndex = -1;
if ( i + 1 < segbrno.size() ) nextBranchIndex = segbrno[i + 1] - 1;
bool isLastSegmentOnBranch = branchIndex != nextBranchIndex;
int brnst = brnstValues[branchIndex];
int brnen = brnenValues[branchIndex];
int segmentId = -1;
if ( !isLastSegmentOnBranch )
{
if ( i + 1 < segnxt.size() ) segmentId = segnxt[i + 1];
}
else
{
segmentId = brnen;
}
segNo.push_back( segmentId );
segmentsForWellDate.emplace_back( RifRftSegmentData( segnxt[i], segbrno[i], brnst, brnen, segmentId ) );
}
if ( segmentsForWellDate.empty() ) continue;
RifRftSegment segment;
segment.setSegmentData( segmentsForWellDate );
auto results = m_opm_rft->listOfRftArrays( wellName, date );
for ( const auto& [name, arrayType, size] : results )
{
if ( ( name.find( "SEG" ) == 0 ) && m_segmentResultItemCount == 0 )
{
m_segmentResultItemCount = size;
}
if ( name.find( "CON" ) == 0 && m_connectionResultItemCount == 0 )
{
m_connectionResultItemCount = size;
}
}
for ( const auto& rftResultMetaData : results )
{
const auto& [name, arrayType, size] = rftResultMetaData;
if ( size == static_cast<int64_t>( m_segmentResultItemCount ) ||
size == static_cast<int64_t>( m_connectionResultItemCount ) )
{
segment.addResultNameAndSize( rftResultMetaData );
}
}
auto wellDateKey = std::make_pair( wellName, date );
m_rftWellDateSegments[wellDateKey] = segment;
buildSegmentBranchTypes( wellDateKey );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::segmentDataDebugLog() const
{
for ( const auto& a : m_rftWellDateSegments )
{
auto [wellName, date] = a.first;
auto segmentData = a.second;
const auto& [y, m, d] = date;
std::cout << "\nWell: " << wellName << "Date : " << y << " " << m << " " << d << " \n";
for ( const auto& r : segmentData.topology() )
{
std::cout << "SEGNXT " << std::setw( 2 ) << r.segNext() << ", ";
std::cout << "SEGBRNO " << std::setw( 2 ) << r.segBrno() << ", ";
std::cout << "BNRST " << std::setw( 2 ) << r.segBrnst() << ", ";
std::cout << "BRNEN " << std::setw( 2 ) << r.segBrnen() << ", ";
std::cout << "SEGNO " << std::setw( 2 ) << r.segNo() << "\n";
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifReaderOpmRft::isOpen() const
{
return m_opm_rft != nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::importWellNames()
{
auto names = m_opm_rft->listOfWells();
for ( const auto& w : names )
{
m_wellNames.insert( QString::fromStdString( w ) );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::buildSegmentBranchTypes( const RftSegmentKey& segmentKey )
{
// A branch can have up to three layers of branches
// Tubing branch
// The inner most branch representing the tubing pipe
//
// Device branch
// Layer between tubing branch and annulus branch or reservoir
// The device segment is connected to a segment on the tubing branch
//
// Annulus branch
// Layer between device branch and reservoir. The segment connection data is imported from WSEGLINK in the
// data deck
auto wellName = segmentKey.first;
auto date = segmentKey.second;
RifRftSegment& segmentRef = m_rftWellDateSegments[segmentKey];
const auto& [y, m, d] = date;
auto dt = RiaQDateTimeTools::createUtcDateTime( QDate( y, m, d ) );
std::vector<double> seglenstValues;
std::vector<double> seglenenValues;
{
auto resultName = RifEclipseRftAddress::createSegmentAddress( QString::fromStdString( wellName ), dt, "SEGLENST" );
values( resultName, &seglenstValues );
if ( seglenstValues.size() > 2 )
{
seglenstValues[0] = seglenstValues[1];
}
}
{
auto resultName = RifEclipseRftAddress::createSegmentAddress( QString::fromStdString( wellName ), dt, "SEGLENEN" );
values( resultName, &seglenenValues );
}
if ( !seglenenValues.empty() && !seglenstValues.empty() )
{
identifyTubingCandidateBranches( segmentRef, wellName, seglenstValues, seglenenValues );
identifyAnnulusBranches( segmentRef, seglenstValues );
// The tubing branches are given increasing branch indices. If a tubing branch is categorized as an
// annulus branch, the index values must be reassigned. Each triplet of tubing/device/annulus has a
// unique branch index.
reassignBranchIndices( segmentRef );
identifyDeviceBranches( segmentRef, seglenstValues );
// Assign branch index to annulus branches
auto branchIds = segmentRef.branchIds();
for ( auto branchId : branchIds )
{
auto branchType = segmentRef.branchType( branchId );
if ( branchType == RiaDefines::RftBranchType::RFT_ANNULUS )
{
auto segmentIndices = segmentRef.segmentIndicesForBranchNumber( branchId );
if ( segmentIndices.empty() ) continue;
auto firstSegmentIndex = segmentIndices.front();
auto firstSegment = segmentRef.topology()[firstSegmentIndex];
auto candidateSegmentNumber = firstSegment.segNext();
auto candidateDeviceSeg = segmentRef.segmentData( candidateSegmentNumber );
if ( candidateDeviceSeg )
{
auto branchIndex = segmentRef.oneBasedBranchIndexForBranchId( candidateDeviceSeg->segBrno() );
if ( branchIndex >= 0 )
{
segmentRef.setOneBasedBranchIndex( branchId, branchIndex );
}
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::identifyTubingCandidateBranches( RifRftSegment& segmentRef,
const std::string& wellName,
const std::vector<double>& seglenstValues,
const std::vector<double>& seglenenValues )
{
int oneBasedBranchIndex = 1;
auto branchIds = segmentRef.branchIds();
for ( auto id : branchIds )
{
double minimumMD = std::numeric_limits<double>::max();
double maximumMD = std::numeric_limits<double>::min();
std::vector<int> segmentNumbers;
auto indices = segmentRef.segmentIndicesForBranchNumber( id );
for ( auto i : indices )
{
minimumMD = std::min( minimumMD, seglenstValues[i] );
maximumMD = std::max( maximumMD, seglenenValues[i] );
segmentNumbers.push_back( segmentRef.topology()[i].segNo() );
}
double length = maximumMD - minimumMD;
segmentRef.setBranchLength( id, length );
RiaDefines::RftBranchType branchType = RiaDefines::RftBranchType::RFT_UNKNOWN;
bool hasFoundAnnulusBranch = false;
// If WESEGLINK is imported, get annulus segments for well
auto annulusSegments = annulusSegmentsForWell( wellName );
std::vector<int> matchingSegments;
std::set_intersection( segmentNumbers.begin(),
segmentNumbers.end(),
annulusSegments.begin(),
annulusSegments.end(),
std::inserter( matchingSegments, matchingSegments.end() ) );
if ( !matchingSegments.empty() )
{
{
branchType = RiaDefines::RftBranchType::RFT_ANNULUS;
// NOTE: Assign branch index after device branch is detected
hasFoundAnnulusBranch = true;
}
}
if ( !hasFoundAnnulusBranch )
{
const double tubingThreshold = 1.0;
if ( length > tubingThreshold )
{
branchType = RiaDefines::RftBranchType::RFT_TUBING;
segmentRef.setOneBasedBranchIndex( id, oneBasedBranchIndex++ );
}
}
segmentRef.setBranchType( id, branchType );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::identifyAnnulusBranches( RifRftSegment& segmentRef, const std::vector<double>& seglenstValues )
{
// If no WESEGLINK data is present, compare the location of the last N segments of two tubing branches. If
// the difference is correct, mark candidate branch as annulus branch instead of tubing.
if ( m_wseglink.empty() )
{
auto tubingIds = segmentRef.tubingBranchIds();
std::map<size_t, std::vector<double>> seglenstForBranch;
for ( auto branchId : tubingIds )
{
std::vector<double> values;
auto indices = segmentRef.segmentIndicesForBranchNumber( branchId );
for ( auto i : indices )
{
values.push_back( seglenstValues[i] );
}
seglenstForBranch[branchId] = values;
}
std::set<size_t> annulusBranchIds;
for ( auto branchId : tubingIds )
{
if ( annulusBranchIds.count( branchId ) ) continue;
for ( auto candidateBranchId : tubingIds )
{
if ( candidateBranchId == branchId ) continue;
if ( annulusBranchIds.count( candidateBranchId ) ) continue;
auto branchValues = seglenstForBranch.at( branchId );
auto candidateValues = seglenstForBranch.at( candidateBranchId );
double lastBranchValue = branchValues.back();
double lastCandidateValue = candidateValues.back();
double diff = lastCandidateValue - lastBranchValue;
const double epsilon = 1e-3;
const double distanceTubingAnnulus = 0.1;
if ( std::fabs( ( std::fabs( diff ) - distanceTubingAnnulus ) ) < epsilon )
{
size_t annulusBranchId = ( diff > 0 ) ? candidateBranchId : branchId;
segmentRef.setBranchType( annulusBranchId, RiaDefines::RftBranchType::RFT_ANNULUS );
annulusBranchIds.insert( annulusBranchId );
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::reassignBranchIndices( RifRftSegment& segmentRef )
{
auto tubingBranchIds = segmentRef.tubingBranchIds();
size_t oneBasedBranchIndex = 1;
std::map<size_t, size_t> newOneBasedBranchIndex;
for ( auto branchId : tubingBranchIds )
{
auto previsousIndex = segmentRef.oneBasedBranchIndexForBranchId( branchId );
newOneBasedBranchIndex[previsousIndex] = oneBasedBranchIndex++;
}
for ( auto branchId : segmentRef.branchIds() )
{
auto branchIndex = segmentRef.oneBasedBranchIndexForBranchId( branchId );
if ( newOneBasedBranchIndex.count( branchIndex ) )
{
segmentRef.setOneBasedBranchIndex( branchId, newOneBasedBranchIndex.at( branchIndex ) );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::identifyDeviceBranches( RifRftSegment& segmentRef, const std::vector<double>& seglenstValues )
{
auto tubingBranchIds = segmentRef.tubingBranchIds();
for ( auto& segment : segmentRef.topology() )
{
auto segmentBranchId = segment.segBrno();
auto it = std::find( tubingBranchIds.begin(), tubingBranchIds.end(), segmentBranchId );
if ( it == tubingBranchIds.end() )
{
auto tubingSegmentNumber = segment.segNext();
auto tubingSegmentData = segmentRef.segmentData( tubingSegmentNumber );
if ( tubingSegmentData != nullptr )
{
auto it = std::find( tubingBranchIds.begin(), tubingBranchIds.end(), tubingSegmentData->segBrno() );
if ( it != tubingBranchIds.end() )
{
// Find all connected segments that is not assigned a branch type, and mark as device layer
auto tubingBranchIndex = segmentRef.oneBasedBranchIndexForBranchId( tubingSegmentData->segBrno() );
segmentRef.createDeviceBranch( segment.segNo(), tubingBranchIndex, seglenstValues );
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<int>
RifReaderOpmRft::importWellData( const std::string& wellName, const std::string& propertyName, const RftDate& date ) const
{
// PERFORMANCE NOTE
// Use method hasRft() that do not throw exception if RFT data is not available. Using this method and avoid
// try/catch and exceptions is way faster.
if ( !m_opm_rft->hasRft( wellName, date ) ) return {};
try
{
// The hasArray method can throw, so we must use a try/catch block here
if ( m_opm_rft->hasArray( propertyName, wellName, date ) )
{
return m_opm_rft->getRft<int>( propertyName, wellName, date );
}
}
catch ( ... )
{
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<int, int>> RifReaderOpmRft::annulusLinksForWell( const std::string& wellName ) const
{
auto it = m_wseglink.find( wellName );
if ( it != m_wseglink.end() )
{
return it->second;
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<int> RifReaderOpmRft::annulusSegmentsForWell( const std::string& wellName ) const
{
std::vector<int> annulusSegments;
for ( auto it : annulusLinksForWell( wellName ) )
{
annulusSegments.push_back( it.first );
}
return annulusSegments;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifEclipseRftAddress::RftWellLogChannelType RifReaderOpmRft::identifyChannelType( const std::string& resultName )
{
if ( resultName == "DEPTH" ) return RifEclipseRftAddress::RftWellLogChannelType::TVD;
if ( resultName == "PRESSURE" ) return RifEclipseRftAddress::RftWellLogChannelType::PRESSURE;
if ( resultName == "SWAT" ) return RifEclipseRftAddress::RftWellLogChannelType::SWAT;
if ( resultName == "SOIL" ) return RifEclipseRftAddress::RftWellLogChannelType::SOIL;
if ( resultName == "SGAS" ) return RifEclipseRftAddress::RftWellLogChannelType::SGAS;
if ( resultName == "WRAT" ) return RifEclipseRftAddress::RftWellLogChannelType::WRAT;
if ( resultName == "ORAT" ) return RifEclipseRftAddress::RftWellLogChannelType::ORAT;
if ( resultName == "GRAT" ) return RifEclipseRftAddress::RftWellLogChannelType::GRAT;
return RifEclipseRftAddress::RftWellLogChannelType::NONE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::string RifReaderOpmRft::resultNameFromChannelType( RifEclipseRftAddress::RftWellLogChannelType channelType )
{
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::TVD ) return "DEPTH";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::PRESSURE ) return "PRESSURE";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::SWAT ) return "SWAT";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::SOIL ) return "SOIL";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::SGAS ) return "SGAS";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::WRAT ) return "WRAT";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::ORAT ) return "ORAT";
if ( channelType == RifEclipseRftAddress::RftWellLogChannelType::GRAT ) return "GRAT";
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<float>
RifReaderOpmRft::resultAsFloat( const std::string& resultName, const std::string& wellName, int year, int month, int day ) const
{
Opm::EclIO::eclArrType resultDataType = Opm::EclIO::eclArrType::REAL;
auto results = m_opm_rft->listOfRftArrays( wellName, year, month, day );
for ( const auto& [name, arrayType, size] : results )
{
if ( resultName == name )
{
resultDataType = arrayType;
break;
}
}
if ( resultDataType == Opm::EclIO::eclArrType::INTE )
{
std::vector<float> data;
auto integerData = m_opm_rft->getRft<int>( resultName, wellName, year, month, day );
for ( auto val : integerData )
{
data.push_back( val );
}
return data;
}
else
{
return m_opm_rft->getRft<float>( resultName, wellName, year, month, day );
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderOpmRft::openFiles()
{
// The file open operations can be costly, so do lazy loading of the files
// NB! Make sure that this function is called from all public functions that needs to access the files
if ( isOpen() ) return;
openFiles( m_fileName, m_dataDeckFileName );
}