ResInsight/ApplicationLibCode/ModelVisualization/RivFaultPartMgr.cpp
Magne Sjaastad 8fea45c267 #8375 NNC : Create NNC generators when NNC data is available
This approach fixes an NNC visibility issue related to use of m_rimFault->faultGeometry()->connectionIndices() before any was assigned in RigMainGrid::distributeNNCsToFaults()
2022-03-28 08:46:10 +02:00

948 lines
36 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivFaultPartMgr.h"
#include "RiaGuiApplication.h"
#include "RiaPreferences.h"
#include "RigCaseCellResultsData.h"
#include "RigMainGrid.h"
#include "RigNNCData.h"
#include "RigResultAccessor.h"
#include "RimEclipseCase.h"
#include "RimEclipseCellColors.h"
#include "RimEclipseView.h"
#include "RimFaultInView.h"
#include "RimFaultInViewCollection.h"
#include "RimRegularLegendConfig.h"
#include "RimTernaryLegendConfig.h"
#include "RivFaultGeometryGenerator.h"
#include "RivMeshLinesSourceInfo.h"
#include "RivNNCGeometryGenerator.h"
#include "RivPartPriority.h"
#include "RivResultToTextureMapper.h"
#include "RivScalarMapperUtils.h"
#include "RivSourceInfo.h"
#include "RivTernaryScalarMapper.h"
#include "RivTernaryTextureCoordsCreator.h"
#include "RivTextLabelSourceInfo.h"
#include "RivTextureCoordsCreator.h"
#include "cvfDrawableGeo.h"
#include "cvfDrawableText.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfqtUtils.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivFaultPartMgr::RivFaultPartMgr( const RigGridBase* grid,
const RimFaultInViewCollection* rimFaultCollection,
RimFaultInView* rimFault )
: m_grid( grid )
, m_rimFaultCollection( rimFaultCollection )
, m_rimFault( rimFault )
, m_opacityLevel( 1.0f )
, m_defaultColor( cvf::Color3::WHITE )
, m_isNativeFaultsGenerated( false )
, m_isOppositeFaultsGenerated( false )
, m_isNativeNncsGenerated( false )
, m_isAllNncsGenerated( false )
{
CVF_ASSERT( rimFault->faultGeometry() );
m_nativeFaultGenerator =
new RivFaultGeometryGenerator( grid, rimFault->faultGeometry(), grid->mainGrid()->nncData(), true );
m_oppositeFaultGenerator =
new RivFaultGeometryGenerator( grid, rimFault->faultGeometry(), grid->mainGrid()->nncData(), false );
m_nativeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_oppositeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_NNCTextureCoords = new cvf::Vec2fArray;
m_allanNNCTextureCoords = new cvf::Vec2fArray;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::setCellVisibility( cvf::UByteArray* cellVisibilities )
{
m_nativeFaultGenerator->setCellVisibility( cellVisibilities );
m_oppositeFaultGenerator->setCellVisibility( cellVisibilities );
if ( m_NNCGenerator.notNull() ) m_NNCGenerator->setCellVisibility( cellVisibilities, m_grid.p() );
if ( m_allanNNCGenerator.notNull() ) m_allanNNCGenerator->setCellVisibility( cellVisibilities, m_grid.p() );
clearFlags();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::applySingleColorEffect()
{
m_defaultColor = m_rimFault->faultColor();
this->updatePartEffect();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateCellResultColor( size_t timeStepIndex, RimEclipseCellColors* cellResultColors )
{
CVF_ASSERT( cellResultColors );
updateNNCColors( timeStepIndex, cellResultColors );
RimEclipseView* eclipseView = cellResultColors->reservoirView();
// Faults
if ( m_nativeFaultFaces.notNull() )
{
if ( cellResultColors->isTernarySaturationSelected() )
{
RivTernaryTextureCoordsCreator texturer( cellResultColors,
cellResultColors->ternaryLegendConfig(),
eclipseView->wellCollection(),
timeStepIndex,
m_grid->gridIndex(),
m_nativeFaultGenerator->quadToCellFaceMapper() );
texturer.createTextureCoords( m_nativeFaultFacesTextureCoords.p() );
const RivTernaryScalarMapper* mapper = cellResultColors->ternaryLegendConfig()->scalarMapper();
RivScalarMapperUtils::applyTernaryTextureResultsToPart( m_nativeFaultFaces.p(),
m_nativeFaultFacesTextureCoords.p(),
mapper,
m_opacityLevel,
this->faceCullingMode(),
eclipseView->isLightingDisabled() );
}
else
{
RivTextureCoordsCreator texturer( cellResultColors,
timeStepIndex,
m_grid->gridIndex(),
m_nativeFaultGenerator->quadToCellFaceMapper() );
if ( !texturer.isValid() )
{
return;
}
texturer.createTextureCoords( m_nativeFaultFacesTextureCoords.p() );
const cvf::ScalarMapper* mapper = cellResultColors->legendConfig()->scalarMapper();
RivScalarMapperUtils::applyTextureResultsToPart( m_nativeFaultFaces.p(),
m_nativeFaultFacesTextureCoords.p(),
mapper,
m_opacityLevel,
this->faceCullingMode(),
eclipseView->isLightingDisabled() );
}
}
if ( m_oppositeFaultFaces.notNull() )
{
if ( cellResultColors->isTernarySaturationSelected() )
{
RivTernaryTextureCoordsCreator texturer( cellResultColors,
cellResultColors->ternaryLegendConfig(),
eclipseView->wellCollection(),
timeStepIndex,
m_grid->gridIndex(),
m_oppositeFaultGenerator->quadToCellFaceMapper() );
texturer.createTextureCoords( m_oppositeFaultFacesTextureCoords.p() );
const RivTernaryScalarMapper* mapper = cellResultColors->ternaryLegendConfig()->scalarMapper();
RivScalarMapperUtils::applyTernaryTextureResultsToPart( m_oppositeFaultFaces.p(),
m_oppositeFaultFacesTextureCoords.p(),
mapper,
m_opacityLevel,
this->faceCullingMode(),
eclipseView->isLightingDisabled() );
}
else
{
RivTextureCoordsCreator texturer( cellResultColors,
timeStepIndex,
m_grid->gridIndex(),
m_oppositeFaultGenerator->quadToCellFaceMapper() );
if ( !texturer.isValid() )
{
return;
}
texturer.createTextureCoords( m_oppositeFaultFacesTextureCoords.p() );
const cvf::ScalarMapper* mapper = cellResultColors->legendConfig()->scalarMapper();
RivScalarMapperUtils::applyTextureResultsToPart( m_oppositeFaultFaces.p(),
m_oppositeFaultFacesTextureCoords.p(),
mapper,
m_opacityLevel,
this->faceCullingMode(),
eclipseView->isLightingDisabled() );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateCellEdgeResultColor( size_t timeStepIndex,
RimEclipseCellColors* cellResultColors,
RimCellEdgeColors* cellEdgeResultColors )
{
updateNNCColors( timeStepIndex, cellResultColors );
if ( m_nativeFaultFaces.notNull() )
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_nativeFaultFaces->drawable() );
if ( dg )
{
cvf::ref<cvf::Effect> eff =
RivScalarMapperUtils::createCellEdgeEffect( dg,
m_nativeFaultGenerator->quadToCellFaceMapper(),
m_grid->gridIndex(),
timeStepIndex,
cellResultColors,
cellEdgeResultColors,
m_opacityLevel,
m_defaultColor,
this->faceCullingMode(),
cellResultColors->reservoirView()->isLightingDisabled() );
m_nativeFaultFaces->setEffect( eff.p() );
}
}
if ( m_oppositeFaultFaces.notNull() )
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_oppositeFaultFaces->drawable() );
if ( dg )
{
cvf::ref<cvf::Effect> eff =
RivScalarMapperUtils::createCellEdgeEffect( dg,
m_oppositeFaultGenerator->quadToCellFaceMapper(),
m_grid->gridIndex(),
timeStepIndex,
cellResultColors,
cellEdgeResultColors,
m_opacityLevel,
m_defaultColor,
this->faceCullingMode(),
cellResultColors->reservoirView()->isLightingDisabled() );
m_oppositeFaultFaces->setEffect( eff.p() );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::generatePartGeometry()
{
bool useBufferObjects = true;
// Surface geometry
{
cvf::ref<cvf::DrawableGeo> geo =
m_nativeFaultGenerator->generateSurface( m_rimFaultCollection->onlyShowFacesWithDefinedNeighbor() );
if ( geo.notNull() )
{
geo->computeNormals();
if ( useBufferObjects )
{
geo->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Grid " + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geo.p() );
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo( m_rimFault, m_grid->gridIndex() );
si->m_cellFaceFromTriangleMapper = m_nativeFaultGenerator->triangleToCellFaceMapper();
part->setSourceInfo( si.p() );
part->updateBoundingBox();
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Fault );
m_nativeFaultFaces = part;
}
}
// Mesh geometry
{
cvf::ref<cvf::DrawableGeo> geoMesh = m_nativeFaultGenerator->createMeshDrawable();
if ( geoMesh.notNull() )
{
if ( useBufferObjects )
{
geoMesh->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Grid mesh" + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geoMesh.p() );
part->updateBoundingBox();
part->setEnableMask( meshFaultBit );
part->setPriority( RivPartPriority::PartType::FaultMeshLines );
part->setSourceInfo( new RivMeshLinesSourceInfo( m_rimFault ) );
m_nativeFaultGridLines = part;
}
}
// Surface geometry
{
cvf::ref<cvf::DrawableGeo> geo =
m_oppositeFaultGenerator->generateSurface( m_rimFaultCollection->onlyShowFacesWithDefinedNeighbor() );
if ( geo.notNull() )
{
geo->computeNormals();
if ( useBufferObjects )
{
geo->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Grid " + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geo.p() );
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo( m_rimFault, m_grid->gridIndex() );
si->m_cellFaceFromTriangleMapper = m_oppositeFaultGenerator->triangleToCellFaceMapper();
part->setSourceInfo( si.p() );
part->updateBoundingBox();
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Fault );
m_oppositeFaultFaces = part;
}
}
// Mesh geometry
{
cvf::ref<cvf::DrawableGeo> geoMesh = m_oppositeFaultGenerator->createMeshDrawable();
if ( geoMesh.notNull() )
{
if ( useBufferObjects )
{
geoMesh->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Grid mesh" + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geoMesh.p() );
part->updateBoundingBox();
part->setEnableMask( meshFaultBit );
part->setPriority( RivPartPriority::PartType::FaultMeshLines );
part->setSourceInfo( new RivMeshLinesSourceInfo( m_rimFault ) );
m_oppositeFaultGridLines = part;
}
}
m_isNativeFaultsGenerated = true;
m_isOppositeFaultsGenerated = true;
createLabelWithAnchorLine( m_nativeFaultFaces.p() );
updatePartEffect();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::generateNativeNncPartGeometry()
{
if ( m_NNCGenerator.isNull() )
{
auto nncConnectionIndices = m_rimFault->faultGeometry()->connectionIndices();
if ( !nncConnectionIndices.empty() )
{
m_NNCGenerator = new RivNNCGeometryGenerator( false,
m_grid->mainGrid()->nncData(),
m_grid->mainGrid()->displayModelOffset(),
nncConnectionIndices );
}
}
if ( m_NNCGenerator.isNull() ) return;
cvf::ref<cvf::DrawableGeo> geo = m_NNCGenerator->generateSurface();
if ( geo.notNull() )
{
geo->computeNormals();
geo->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "NNC in Fault. Grid " + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geo.p() );
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo( m_rimFault, m_grid->gridIndex() );
si->m_NNCIndices = m_NNCGenerator->triangleToNNCIndex().p();
part->setSourceInfo( si.p() );
part->updateBoundingBox();
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Nnc );
cvf::ref<cvf::Effect> eff = new cvf::Effect;
part->setEffect( eff.p() );
m_NNCFaces = part;
updatePartEffect();
}
m_isNativeNncsGenerated = true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::generateAllNncPartGeometry()
{
if ( m_allanNNCGenerator.isNull() )
{
auto nncConnectionIndices = m_rimFault->faultGeometry()->connectionIndices();
if ( !nncConnectionIndices.empty() )
{
m_allanNNCGenerator = new RivNNCGeometryGenerator( true,
m_grid->mainGrid()->nncData(),
m_grid->mainGrid()->displayModelOffset(),
nncConnectionIndices );
}
}
if ( m_allanNNCGenerator.isNull() ) return;
cvf::ref<cvf::DrawableGeo> geo = m_allanNNCGenerator->generateSurface();
if ( geo.notNull() )
{
geo->computeNormals();
geo->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Allan NNC in Fault. Grid " + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geo.p() );
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo( m_rimFault, m_grid->gridIndex() );
si->m_NNCIndices = m_allanNNCGenerator->triangleToNNCIndex().p();
part->setSourceInfo( si.p() );
part->updateBoundingBox();
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Nnc );
cvf::ref<cvf::Effect> eff = new cvf::Effect;
part->setEffect( eff.p() );
m_allanNNCFaces = part;
updatePartEffect();
}
m_isAllNncsGenerated = true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::clearFlags()
{
m_isNativeFaultsGenerated = false;
m_isOppositeFaultsGenerated = false;
m_isNativeNncsGenerated = false;
m_isAllNncsGenerated = false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updatePartEffect()
{
// Set default effect
caf::SurfaceEffectGenerator geometryEffgen( m_defaultColor, caf::PO_1 );
geometryEffgen.setCullBackfaces( faceCullingMode() );
cvf::ref<cvf::Effect> geometryOnlyEffect = geometryEffgen.generateCachedEffect();
if ( m_nativeFaultFaces.notNull() )
{
m_nativeFaultFaces->setEffect( geometryOnlyEffect.p() );
}
if ( m_oppositeFaultFaces.notNull() )
{
m_oppositeFaultFaces->setEffect( geometryOnlyEffect.p() );
}
updateNNCColors( 0, nullptr );
// Update mesh colors as well, in case of change
RiaPreferences* prefs = RiaPreferences::current();
cvf::ref<cvf::Effect> eff;
caf::MeshEffectGenerator faultEffGen( prefs->defaultFaultGridLineColors() );
eff = faultEffGen.generateCachedEffect();
if ( m_nativeFaultGridLines.notNull() )
{
m_nativeFaultGridLines->setEffect( eff.p() );
}
if ( m_oppositeFaultGridLines.notNull() )
{
m_oppositeFaultGridLines->setEffect( eff.p() );
}
if ( m_opacityLevel < 1.0f )
{
// Set priority to make sure this transparent geometry are rendered last
if ( m_nativeFaultFaces.notNull() )
m_nativeFaultFaces->setPriority( RivPartPriority::PartType::TransparentFault );
if ( m_oppositeFaultFaces.notNull() )
m_oppositeFaultFaces->setPriority( RivPartPriority::PartType::TransparentFault );
if ( m_NNCFaces.notNull() ) m_NNCFaces->setPriority( RivPartPriority::PartType::TransparentNnc );
if ( m_allanNNCFaces.notNull() ) m_allanNNCFaces->setPriority( RivPartPriority::PartType::TransparentNnc );
if ( m_nativeFaultGridLines.notNull() )
{
m_nativeFaultGridLines->setPriority( RivPartPriority::PartType::FaultMeshLines );
}
if ( m_oppositeFaultGridLines.notNull() )
{
m_oppositeFaultGridLines->setPriority( RivPartPriority::PartType::FaultMeshLines );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::createLabelWithAnchorLine( const cvf::Part* part )
{
m_faultLabelPart = nullptr;
m_faultLabelLinePart = nullptr;
if ( !part ) return;
cvf::BoundingBox bb = part->boundingBox();
cvf::Vec3d bbTopCenter = bb.center();
bbTopCenter.z() = bb.max().z();
const cvf::DrawableGeo* geo = dynamic_cast<const cvf::DrawableGeo*>( part->drawable() );
// Find closest vertex to top of bounding box.
// Will be recomputed when filter changes, to make sure the label is always visible
// for any filter combination
cvf::Vec3f faultVertexToAttachLabel = findClosestVertex( cvf::Vec3f( bbTopCenter ), geo->vertexArray() );
cvf::Vec3f labelPosition = faultVertexToAttachLabel;
labelPosition.z() += bb.extent().z() / 2;
// Fault label
if ( !m_rimFault->name().isEmpty() )
{
RiaGuiApplication* app = RiaGuiApplication::instance();
cvf::Font* font = app->defaultWellLabelFont();
cvf::ref<cvf::DrawableText> drawableText = new cvf::DrawableText;
drawableText->setFont( font );
drawableText->setCheckPosVisible( false );
drawableText->setDrawBorder( false );
drawableText->setDrawBackground( false );
drawableText->setVerticalAlignment( cvf::TextDrawer::CENTER );
cvf::Color3f defWellLabelColor = app->preferences()->defaultWellLabelColor();
{
{
RimFaultInViewCollection* parentObject;
m_rimFault->firstAncestorOrThisOfType( parentObject );
if ( parentObject )
{
defWellLabelColor = parentObject->faultLabelColor();
}
}
}
drawableText->setTextColor( defWellLabelColor );
cvf::String cvfString = cvfqt::Utils::toString( m_rimFault->name() );
cvf::Vec3f textCoord( labelPosition );
double characteristicCellSize = bb.extent().z() / 20;
textCoord.z() += characteristicCellSize;
drawableText->addText( cvfString, textCoord );
cvf::ref<cvf::Part> labelPart = new cvf::Part;
labelPart->setName( "RivFaultPart : text " + cvfString );
labelPart->setDrawable( drawableText.p() );
cvf::ref<cvf::Effect> eff = new cvf::Effect;
labelPart->setEffect( eff.p() );
labelPart->setPriority( RivPartPriority::PartType::Text );
labelPart->setSourceInfo( new RivTextLabelSourceInfo( m_rimFault, cvfString, textCoord ) );
m_faultLabelPart = labelPart;
}
// Line from fault geometry to label
{
cvf::ref<cvf::Vec3fArray> vertices = new cvf::Vec3fArray;
vertices->reserve( 2 );
vertices->add( faultVertexToAttachLabel );
vertices->add( labelPosition );
cvf::ref<cvf::DrawableGeo> lineGeo = new cvf::DrawableGeo;
lineGeo->setVertexArray( vertices.p() );
cvf::ref<cvf::PrimitiveSetDirect> primSet = new cvf::PrimitiveSetDirect( cvf::PT_LINES );
primSet->setStartIndex( 0 );
primSet->setIndexCount( vertices->size() );
lineGeo->addPrimitiveSet( primSet.p() );
m_faultLabelLinePart = new cvf::Part;
m_faultLabelLinePart->setName( "Anchor line for label" + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
m_faultLabelLinePart->setDrawable( lineGeo.p() );
m_faultLabelLinePart->updateBoundingBox();
caf::MeshEffectGenerator gen( m_rimFault->faultColor() );
cvf::ref<cvf::Effect> eff = gen.generateCachedEffect();
m_faultLabelLinePart->setEffect( eff.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RivFaultPartMgr::findClosestVertex( const cvf::Vec3f& point, const cvf::Vec3fArray* vertices )
{
CVF_ASSERT( vertices );
if ( !vertices ) return cvf::Vec3f::UNDEFINED;
float closestDiff( HUGE_VAL );
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
for ( size_t i = 0; i < vertices->size(); i++ )
{
float diff = point.pointDistance( vertices->get( i ) );
if ( diff < closestDiff )
{
closestDiff = diff;
closestIndex = i;
}
}
if ( closestIndex != cvf::UNDEFINED_SIZE_T )
{
return vertices->get( closestIndex );
}
else
{
return cvf::Vec3f::UNDEFINED;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNativeFaultFacesToModel( cvf::ModelBasicList* model )
{
if ( !m_isNativeFaultsGenerated )
{
generatePartGeometry();
}
if ( m_nativeFaultFaces.notNull() )
{
model->addPart( m_nativeFaultFaces.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendOppositeFaultFacesToModel( cvf::ModelBasicList* model )
{
if ( !m_isOppositeFaultsGenerated )
{
generatePartGeometry();
}
if ( m_oppositeFaultFaces.notNull() )
{
model->addPart( m_oppositeFaultFaces.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendLabelPartsToModel( cvf::ModelBasicList* model )
{
if ( m_faultLabelPart.notNull() ) model->addPart( m_faultLabelPart.p() );
if ( m_faultLabelLinePart.notNull() ) model->addPart( m_faultLabelLinePart.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendMeshLinePartsToModel( cvf::ModelBasicList* model )
{
if ( m_nativeFaultGridLines.notNull() ) model->addPart( m_nativeFaultGridLines.p() );
if ( m_oppositeFaultGridLines.notNull() ) model->addPart( m_oppositeFaultGridLines.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendCompleteNNCFacesToModel( cvf::ModelBasicList* model )
{
if ( !m_isAllNncsGenerated )
{
generateAllNncPartGeometry();
}
if ( m_allanNNCFaces.notNull() ) model->addPart( m_allanNNCFaces.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNativeNNCFacesToModel( cvf::ModelBasicList* model )
{
if ( !m_isNativeNncsGenerated )
{
generateNativeNncPartGeometry();
}
if ( m_NNCFaces.notNull() ) model->addPart( m_NNCFaces.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::FaceCulling RivFaultPartMgr::faceCullingMode() const
{
bool isShowingGrid = m_rimFaultCollection->isGridVisualizationMode();
if ( !isShowingGrid )
{
if ( m_rimFaultCollection->faultResult() == RimFaultInViewCollection::FAULT_BACK_FACE_CULLING )
{
if ( m_grid->mainGrid()->isFaceNormalsOutwards() )
{
return caf::FC_BACK;
}
else
{
return caf::FC_FRONT;
}
}
else if ( m_rimFaultCollection->faultResult() == RimFaultInViewCollection::FAULT_FRONT_FACE_CULLING )
{
if ( m_grid->mainGrid()->isFaceNormalsOutwards() )
{
return caf::FC_FRONT;
}
else
{
return caf::FC_BACK;
}
}
else
{
return caf::FC_NONE;
}
}
else
{
// Do not perform face culling in grid mode to make sure the displayed grid is watertight
return caf::FC_NONE;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateNNCColors( size_t timeStepIndex, RimEclipseCellColors* cellResultColors )
{
bool updateNnc = m_NNCFaces.notNull();
bool updateAllan = m_allanNNCFaces.notNull();
if ( !updateNnc && !updateAllan )
{
return;
}
bool showNncsWithScalarMappedColor = false;
RimEclipseView* eclipseView = nullptr;
if ( cellResultColors )
{
RigEclipseResultAddress eclResAddr = cellResultColors->eclipseResultAddress();
if ( m_grid->mainGrid()->nncData()->hasScalarValues( eclResAddr ) )
{
showNncsWithScalarMappedColor = true;
}
eclipseView = cellResultColors->reservoirView();
}
if ( showNncsWithScalarMappedColor )
{
RigEclipseResultAddress eclResAddr = cellResultColors->eclipseResultAddress();
RiaDefines::ResultCatType resultType = cellResultColors->resultType();
const cvf::ScalarMapper* mapper = cellResultColors->legendConfig()->scalarMapper();
if ( eclipseView )
{
RimEclipseCase* eclipseCase = eclipseView->eclipseCase();
if ( eclipseCase )
{
size_t nativeTimeStepIndex = eclipseCase->uiToNativeTimeStepIndex( timeStepIndex );
if ( updateNnc )
{
m_NNCGenerator->textureCoordinates( m_NNCTextureCoords.p(),
mapper,
resultType,
eclResAddr,
nativeTimeStepIndex );
}
if ( updateAllan )
{
m_allanNNCGenerator->textureCoordinates( m_allanNNCTextureCoords.p(),
mapper,
resultType,
eclResAddr,
nativeTimeStepIndex );
}
}
}
cvf::ref<cvf::Effect> nncEffect;
if ( m_rimFaultCollection->showFaultFaces || m_rimFaultCollection->showOppositeFaultFaces )
{
// Move NNC closer to camera to avoid z-fighting with grid surface
caf::ScalarMapperEffectGenerator nncEffgen( mapper, caf::PO_NEG_LARGE );
if ( eclipseView ) nncEffgen.disableLighting( eclipseView->isLightingDisabled() );
nncEffect = nncEffgen.generateCachedEffect();
}
else
{
// If no grid is present, use same offset as grid geometry to be able to see mesh lines
caf::ScalarMapperEffectGenerator nncEffgen( mapper, caf::PO_1 );
if ( eclipseView ) nncEffgen.disableLighting( eclipseView->isLightingDisabled() );
nncEffect = nncEffgen.generateCachedEffect();
}
if ( updateNnc )
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_NNCFaces->drawable() );
if ( dg ) dg->setTextureCoordArray( m_NNCTextureCoords.p() );
m_NNCFaces->setEffect( nncEffect.p() );
}
if ( updateAllan )
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_allanNNCFaces->drawable() );
if ( dg ) dg->setTextureCoordArray( m_allanNNCTextureCoords.p() );
m_allanNNCFaces->setEffect( nncEffect.p() );
}
}
else
{
// NNC faces a bit lighter than the fault for now
cvf::Color3f nncColor = m_defaultColor;
nncColor.r() += ( 1.0 - nncColor.r() ) * 0.2;
nncColor.g() += ( 1.0 - nncColor.g() ) * 0.2;
nncColor.b() += ( 1.0 - nncColor.b() ) * 0.2;
CVF_ASSERT( nncColor.isValid() );
cvf::ref<cvf::Effect> nncEffect;
if ( m_rimFaultCollection->showFaultFaces || m_rimFaultCollection->showOppositeFaultFaces )
{
// Move NNC closer to camera to avoid z-fighting with grid surface
caf::SurfaceEffectGenerator nncEffgen( nncColor, caf::PO_NEG_LARGE );
nncEffect = nncEffgen.generateCachedEffect();
}
else
{
// If no grid is present, use same offset as grid geometry to be able to see mesh lines
caf::SurfaceEffectGenerator nncEffgen( nncColor, caf::PO_1 );
nncEffect = nncEffgen.generateCachedEffect();
}
if ( updateNnc )
{
m_NNCFaces->setEffect( nncEffect.p() );
}
if ( updateAllan )
{
m_allanNNCFaces->setEffect( nncEffect.p() );
}
}
}