ResInsight/Fwk/VizFwk/LibCore/cvfVector2.inl
Magne Sjaastad 486f383de7 Integrated changes for framework
Pdm fields can contain a forward declared Pdm object without the include
file
VizFwk: Added VertexColoring shader to be able to use per vertex color
used from drawableGeo::setColorArray()
2014-04-11 11:06:42 +02:00

522 lines
17 KiB
C++

//##################################################################################################
//
// Custom Visualization Core library
// Copyright (C) 2011-2013 Ceetron AS
//
// This library may be used under the terms of either the GNU General Public License or
// the GNU Lesser General Public License as follows:
//
// GNU General Public License Usage
// This library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <<http://www.gnu.org/licenses/gpl.html>>
// for more details.
//
// GNU Lesser General Public License Usage
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU Lesser General Public License at <<http://www.gnu.org/licenses/lgpl-2.1.html>>
// for more details.
//
//##################################################################################################
namespace cvf {
//==================================================================================================
///
/// \class cvf::Vector2
/// \ingroup Core
///
/// Templated vector class for a 2 component vector.
///
/// Three ready-to-use typedefs are defined:\n
/// - cvf::Vec2f (Vector2<float>)
/// - cvf::Vec2d (Vector2<double>)
/// - cvf::Vec2i (Vector2<int>)
///
//==================================================================================================
template<typename S> Vector2<S> const Vector2<S>::X_AXIS(1, 0);
template<typename S> Vector2<S> const Vector2<S>::Y_AXIS(0, 1);
template<typename S> Vector2<S> const Vector2<S>::ZERO(0, 0);
//--------------------------------------------------------------------------------------------------
/// Set the vector to <x,y>
//--------------------------------------------------------------------------------------------------
template<typename S>
Vector2<S>::Vector2(S x, S y)
{
m_v[0] = x;
m_v[1] = y;
}
//--------------------------------------------------------------------------------------------------
/// Set the vector to the same as other
//--------------------------------------------------------------------------------------------------
template<typename S>
Vector2<S>::Vector2(const Vector2& other)
{
*this = other;
}
//--------------------------------------------------------------------------------------------------
/// An explicit cast constructor to convert from one vector type to another.
//--------------------------------------------------------------------------------------------------
template<typename S>
template<typename T>
Vector2<S>::Vector2(const T& other)
{
m_v[0] = static_cast<S>(other.x());
m_v[1] = static_cast<S>(other.y());
}
//--------------------------------------------------------------------------------------------------
/// Assign the vector to the contents of other
//--------------------------------------------------------------------------------------------------
template<typename S>
Vector2<S>& Vector2<S>::operator=(const Vector2& other)
{
m_v[0] = other.m_v[0];
m_v[1] = other.m_v[1];
return *this;
}
//--------------------------------------------------------------------------------------------------
/// Check if two vectors are equal. An exact match is required.
//--------------------------------------------------------------------------------------------------
template<typename S>
bool Vector2<S>::equals(const Vector2& other) const
{
return (*this == other);
}
//--------------------------------------------------------------------------------------------------
/// Check if two vectors are equal. An exact match is required.
//--------------------------------------------------------------------------------------------------
template<typename S>
inline bool Vector2<S>::operator==(const Vector2& rhs) const
{
return (m_v[0] == rhs.m_v[0]) && (m_v[1] == rhs.m_v[1]);
}
//--------------------------------------------------------------------------------------------------
/// Check if two vectors are different. Returns true if not an exact match
//--------------------------------------------------------------------------------------------------
template<typename S>
inline bool Vector2<S>::operator!=(const Vector2& rhs) const
{
return !operator==(rhs);
}
//--------------------------------------------------------------------------------------------------
/// Returns the sum of this vector and the rhs vector
//--------------------------------------------------------------------------------------------------
template<typename S>
inline const Vector2<S> Vector2<S>::operator+(const Vector2& rhs) const
{
return Vector2(m_v[0]+rhs.m_v[0], m_v[1]+rhs.m_v[1]);
}
//--------------------------------------------------------------------------------------------------
/// Adds the vector \a other to this vector
//--------------------------------------------------------------------------------------------------
template<typename S>
void Vector2<S>::add(const Vector2& other)
{
(*this) += other;
}
//--------------------------------------------------------------------------------------------------
/// Subtracts the vector \a other from this vector
//--------------------------------------------------------------------------------------------------
template<typename S>
void cvf::Vector2<S>::subtract(const Vector2& other)
{
(*this) -= other;
}
//--------------------------------------------------------------------------------------------------
/// Compute this-rhs and return the result.
//--------------------------------------------------------------------------------------------------
template<typename S>
inline const Vector2<S> Vector2<S>::operator-(const Vector2& rhs) const
{
return Vector2(m_v[0] - rhs.m_v[0], m_v[1] - rhs.m_v[1]);
}
//--------------------------------------------------------------------------------------------------
/// Scale this vector by the given scalar
//--------------------------------------------------------------------------------------------------
template<typename S>
void Vector2<S>::scale(S scalar)
{
(*this) *= scalar;
}
//--------------------------------------------------------------------------------------------------
/// Return this vector scaled by the given scalar
//--------------------------------------------------------------------------------------------------
template<typename S>
const Vector2<S> Vector2<S>::operator*(S scalar) const
{
return Vector2(m_v[0]*scalar, m_v[1]*scalar);
}
//--------------------------------------------------------------------------------------------------
/// Return vector scaled by the given scalar
//--------------------------------------------------------------------------------------------------
template<typename T>
const Vector2<T> operator*(T scalar, const Vector2<T>& rhs)
{
// Note that this is a friend function
return Vector2<T>(rhs.m_v[0]*scalar, rhs.m_v[1]*scalar);
}
//--------------------------------------------------------------------------------------------------
/// Return a vector where each component is the corresponding component in this divided by scalar
//--------------------------------------------------------------------------------------------------
template<typename S>
const Vector2<S> Vector2<S>::operator/(S scalar) const
{
return Vector2(m_v[0]/scalar, m_v[1]/scalar);
}
//--------------------------------------------------------------------------------------------------
/// Return a vector which is the negation of this
//--------------------------------------------------------------------------------------------------
template<typename S>
const Vector2<S> Vector2<S>::operator-() const
{
return Vector2(-m_v[0], -m_v[1]);
}
//--------------------------------------------------------------------------------------------------
/// Add the given vector to this
//--------------------------------------------------------------------------------------------------
template<typename S>
inline Vector2<S>& Vector2<S>::operator+=(const Vector2& v)
{
m_v[0] += v.x();
m_v[1] += v.y();
return *this;
}
//--------------------------------------------------------------------------------------------------
/// Subtract the given vector from this
//--------------------------------------------------------------------------------------------------
template<typename S>
inline Vector2<S>& Vector2<S>::operator-=(const Vector2& v)
{
m_v[0] -= v.x();
m_v[1] -= v.y();
return *this;
}
//--------------------------------------------------------------------------------------------------
/// Scale this with the given scalar. Each component is multiplied with the given value
//--------------------------------------------------------------------------------------------------
template<typename S>
inline Vector2<S>& Vector2<S>::operator*=(S scalar)
{
m_v[0] *= scalar;
m_v[1] *= scalar;
return *this;
}
//--------------------------------------------------------------------------------------------------
/// Divide this with the given scalar. Each component is divided by the given scalar
//--------------------------------------------------------------------------------------------------
template<typename S>
inline Vector2<S>& Vector2<S>::operator/=(S scalar)
{
m_v[0] /= scalar;
m_v[1] /= scalar;
return *this;
}
//--------------------------------------------------------------------------------------------------
/// Get component 0 or 1. E.g. x = v[0];
//--------------------------------------------------------------------------------------------------
template<typename S>
inline const S& Vector2<S>::operator[](int index) const
{
CVF_TIGHT_ASSERT(index >= 0);
CVF_TIGHT_ASSERT(index < 2);
return m_v[index];
}
//--------------------------------------------------------------------------------------------------
/// Set component 0 or 1. E.g. v[0] = x;
//--------------------------------------------------------------------------------------------------
template<typename S>
inline S& Vector2<S>::operator[](int index)
{
CVF_TIGHT_ASSERT(index >= 0);
CVF_TIGHT_ASSERT(index < 2);
return m_v[index];
}
//--------------------------------------------------------------------------------------------------
/// Compute the dot product of this and \a other
//--------------------------------------------------------------------------------------------------
template<typename S>
S Vector2<S>::dot(const Vector2& other) const
{
return (*this)*other;
}
//--------------------------------------------------------------------------------------------------
/// Compute the dot product of this and rhs and return the result (scalar)
///
/// Formula:
/// \code
/// S = tx*rx + ty*ry
/// \endcode
//--------------------------------------------------------------------------------------------------
template<typename S>
inline S Vector2<S>::operator*(const Vector2& rhs) const
{
return m_v[0]*rhs.m_v[0] + m_v[1]*rhs.m_v[1];
}
//--------------------------------------------------------------------------------------------------
/// Set the vector from the other vector (of different type). Cast each component to convert it.
//--------------------------------------------------------------------------------------------------
template<typename S>
template<typename T>
void Vector2<S>::set(const T& other)
{
m_v[0] = static_cast<S>(other.x());
m_v[1] = static_cast<S>(other.y());
}
//--------------------------------------------------------------------------------------------------
/// Get the length of the vector
///
/// Formula:
/// \code
/// len = sqrt(x*x + y*y)
/// \endcode
//--------------------------------------------------------------------------------------------------
template<typename S>
inline S Vector2<S>::length() const
{
return Math::sqrt(m_v[0]*m_v[0] + m_v[1]*m_v[1]);
}
//--------------------------------------------------------------------------------------------------
/// Get the squared length (L2) of the vector
///
/// Formula:
/// \code
/// len = x*x + y*y
/// \endcode
//--------------------------------------------------------------------------------------------------
template<typename S>
inline S Vector2<S>::lengthSquared() const
{
return m_v[0]*m_v[0] + m_v[1]*m_v[1];
}
//--------------------------------------------------------------------------------------------------
/// Set the length of the vector to \a newLength.
///
/// \sa Vector3::setLength()
//--------------------------------------------------------------------------------------------------
template<typename S>
bool Vector2<S>::setLength(S newLength)
{
CVF_ASSERT(newLength >= 0);
S currLen = length();
if (currLen > std::numeric_limits<S>::epsilon() && newLength > 0)
{
S scale = newLength/currLen;
m_v[0] *= scale;
m_v[1] *= scale;
return true;
}
else
{
setZero();
return (newLength == 0) ? true : false;
}
}
//--------------------------------------------------------------------------------------------------
/// Return a unit length perpendicular vector
///
/// Returns the vector (y,-x), normalized. This can be thought of as the 'right' vector.
//--------------------------------------------------------------------------------------------------
template<typename S>
const Vector2<S> Vector2<S>::perpendicularVector() const
{
S len = length();
if (len > 0.0)
{
S oneOverLen = (static_cast<S>(1.0)/len);
return Vector2<S>(m_v[1]*oneOverLen, -m_v[0]*oneOverLen);
}
else
{
return Vector2<S>::ZERO;
}
}
//--------------------------------------------------------------------------------------------------
/// Normalize the vector (make sure the length is 1.0).
///
/// \return Returns true if normalization was possible. Returns false if length is zero or a NaN vector.
//--------------------------------------------------------------------------------------------------
template<typename S>
bool Vector2<S>::normalize()
{
S len = length();
if (len > 0.0)
{
// Precompute 1/length and do multiplication instead of division
S oneOverLen = (static_cast<S>(1.0)/len);
m_v[0] *= oneOverLen;
m_v[1] *= oneOverLen;
return true;
}
else
{
// Might be NaN, so set it to zero
m_v[0] = 0;
m_v[1] = 0;
return false;
}
}
//--------------------------------------------------------------------------------------------------
/// Returns a normalized version of the current vector. The vector is unchanged.
//--------------------------------------------------------------------------------------------------
template<typename S>
const Vector2<S> Vector2<S>::getNormalized(bool* normalizationOK) const
{
S len = length();
if (len > 0.0)
{
if (normalizationOK) *normalizationOK = true;
S oneOverLen = (static_cast<S>(1.0)/len);
return Vector2<S>(m_v[0]*oneOverLen, m_v[1]*oneOverLen);
}
else
{
if (normalizationOK) *normalizationOK = false;
return Vector2<S>::ZERO;
}
}
//--------------------------------------------------------------------------------------------------
/// Set all components to 0
//--------------------------------------------------------------------------------------------------
template<typename S>
inline void Vector2<S>::setZero()
{
m_v[0] = 0;
m_v[1] = 0;
}
//--------------------------------------------------------------------------------------------------
/// Check if all components are zero (exact match)
//--------------------------------------------------------------------------------------------------
template<typename S>
inline bool Vector2<S>::isZero() const
{
return (m_v[0] == 0) && (m_v[1] == 0);
}
//--------------------------------------------------------------------------------------------------
/// Check if vector is undefined
///
/// \return Returns true if any one of the components is undefined
//--------------------------------------------------------------------------------------------------
template<typename S>
inline bool Vector2<S>::isUndefined() const
{
if (Math::isUndefined(m_v[0]) ||
Math::isUndefined(m_v[1]))
{
return true;
}
else
{
return false;
}
}
//--------------------------------------------------------------------------------------------------
/// Set the components of the vector
//--------------------------------------------------------------------------------------------------
template<typename S>
inline void Vector2<S>::set(S x, S y)
{
m_v[0] = x;
m_v[1] = y;
}
} // namespace cvf