ResInsight/ApplicationCode/ReservoirDataModel/RigEclipseCrossPlotDataExtractor.cpp

153 lines
6.7 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2019- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseCrossPlotDataExtractor.h"
#include "RiaQDateTimeTools.h"
#include "RigActiveCellInfo.h"
#include "RigActiveCellsResultAccessor.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigEclipseResultBinSorter.h"
#include "RigFormationNames.h"
#include "RigMainGrid.h"
#include <memory>
#include <set>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseCrossPlotResult RigEclipseCrossPlotDataExtractor::extract(RigEclipseCaseData* caseData,
int resultTimeStep,
const RigEclipseResultAddress& xAddress,
const RigEclipseResultAddress& yAddress,
RigGridCrossPlotCurveGrouping groupingType,
const RigEclipseResultAddress& groupAddress,
std::map<int, cvf::UByteArray> timeStepCellVisibilityMap)
{
RigEclipseCrossPlotResult result;
RigCaseCellResultsData* resultData = caseData->results(RiaDefines::MATRIX_MODEL);
RigFormationNames* activeFormationNames = resultData->activeFormationNames();
std::unique_ptr<RigEclipseResultBinSorter> catBinSorter;
const std::vector<std::vector<double>>* catValuesForAllSteps = nullptr;
if (xAddress.isValid() && yAddress.isValid())
{
RigActiveCellInfo* activeCellInfo = resultData->activeCellInfo();
const RigMainGrid* mainGrid = caseData->mainGrid();
resultData->ensureKnownResultLoaded(xAddress);
resultData->ensureKnownResultLoaded(yAddress);
const std::vector<std::vector<double>>& xValuesForAllSteps = resultData->cellScalarResults(xAddress);
const std::vector<std::vector<double>>& yValuesForAllSteps = resultData->cellScalarResults(yAddress);
if (groupingType == GROUP_BY_RESULT && groupAddress.isValid())
{
resultData->ensureKnownResultLoaded(groupAddress);
catValuesForAllSteps = &resultData->cellScalarResults(groupAddress);
}
std::set<int> timeStepsToInclude;
if (resultTimeStep == -1)
{
size_t nStepsInData = std::max(xValuesForAllSteps.size(), yValuesForAllSteps.size());
bool xValid = xValuesForAllSteps.size() == 1u || xValuesForAllSteps.size() == nStepsInData;
bool yValid = yValuesForAllSteps.size() == 1u || yValuesForAllSteps.size() == nStepsInData;
if (!(xValid && yValid))
return result;
for (size_t i = 0; i < nStepsInData; ++i)
{
timeStepsToInclude.insert((int)i);
}
}
else
{
timeStepsToInclude.insert(static_cast<size_t>(resultTimeStep));
}
for (int timeStep : timeStepsToInclude)
{
const cvf::UByteArray* cellVisibility = nullptr;
if (timeStepCellVisibilityMap.count(timeStep))
{
cellVisibility = &timeStepCellVisibilityMap[timeStep];
}
int xIndex = timeStep >= (int)xValuesForAllSteps.size() ? 0 : timeStep;
int yIndex = timeStep >= (int)yValuesForAllSteps.size() ? 0 : timeStep;
RigActiveCellsResultAccessor xAccessor(mainGrid, &xValuesForAllSteps[xIndex], activeCellInfo);
RigActiveCellsResultAccessor yAccessor(mainGrid, &yValuesForAllSteps[yIndex], activeCellInfo);
std::unique_ptr<RigActiveCellsResultAccessor> catAccessor;
if (catValuesForAllSteps)
{
int catIndex = timeStep >= (int)catValuesForAllSteps->size() ? 0 : timeStep;
catAccessor.reset(
new RigActiveCellsResultAccessor(mainGrid, &(catValuesForAllSteps->at(catIndex)), activeCellInfo));
}
for (size_t globalCellIdx = 0; globalCellIdx < activeCellInfo->reservoirCellCount(); ++globalCellIdx)
{
if (cellVisibility && !(*cellVisibility)[globalCellIdx]) continue;
double xValue = xAccessor.cellScalarGlobIdx(globalCellIdx);
double yValue = yAccessor.cellScalarGlobIdx(globalCellIdx);
if (xValue == HUGE_VAL || yValue == HUGE_VAL) continue;
result.xValues.push_back(xValue);
result.yValues.push_back(yValue);
if (groupingType == GROUP_BY_TIME)
{
result.groupValuesDiscrete.push_back(timeStep);
}
else if (groupingType == GROUP_BY_FORMATION)
{
CVF_ASSERT(activeFormationNames);
int category = 0;
size_t i(cvf::UNDEFINED_SIZE_T), j(cvf::UNDEFINED_SIZE_T), k(cvf::UNDEFINED_SIZE_T);
if (mainGrid->ijkFromCellIndex(globalCellIdx, &i, &j, &k))
{
category = activeFormationNames->formationIndexFromKLayerIdx(k);
}
result.groupValuesDiscrete.push_back(category);
}
else if (groupingType == GROUP_BY_RESULT)
{
double catValue = HUGE_VAL;
if (catAccessor)
{
catValue = catAccessor->cellScalarGlobIdx(globalCellIdx);
}
result.groupValuesContinuous.push_back(catValue);
}
}
}
}
return result;
}