ResInsight/ApplicationLibCode/GeoMech/GeoMechDataModel/RigFemPartResultCalculatorPoreCompressibility.cpp
Magne Sjaastad bb293539d5
Additional refactoring for POR-Bar result handling
* Always use element-nodal for POR calculations
* Add RigFemAddressDefines
Add special handling for "POR-Bar" result, always use element_nodal

* 9362 Show unit text "sg" when normalized by hydrostatic pressure
2023-08-23 13:29:54 +02:00

275 lines
15 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultCalculatorPoreCompressibility.h"
#include "RiaEclipseUnitTools.h"
#include "RigFemAddressDefines.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemScalarResultFrames.h"
#include "Riu3DMainWindowTools.h"
#include "cafProgressInfo.h"
#include <QString>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorPoreCompressibility::RigFemPartResultCalculatorPoreCompressibility( RigFemPartResultsCollection& collection )
: RigFemPartResultCalculator( collection )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorPoreCompressibility::~RigFemPartResultCalculatorPoreCompressibility()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorPoreCompressibility::isMatching( const RigFemResultAddress& resVarAddr ) const
{
return ( resVarAddr.fieldName == "COMPRESSIBILITY" && ( resVarAddr.componentName == "PORE" || resVarAddr.componentName == "VERTICAL" ||
resVarAddr.componentName == "VERTICAL-RATIO" ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorPoreCompressibility::calculate( int partIndex, const RigFemResultAddress& resAddr )
{
caf::ProgressInfo stepCountProgress( static_cast<size_t>( m_resultCollection->timeStepCount() ) * 7, "Calculating Pore Compressibility" );
auto loadFrameLambda = [&]( RigFemResultAddress addr, const QString& errMsg = "" ) -> RigFemScalarResultFrames*
{
auto task = stepCountProgress.task( QString( "Loading %1: %2" )
.arg( QString::fromStdString( addr.fieldName ) )
.arg( QString::fromStdString( addr.componentName ) ),
m_resultCollection->timeStepCount() );
auto result = m_resultCollection->findOrLoadScalarResult( partIndex, addr );
if ( result->frameData( 0, 0 ).empty() )
{
if ( !errMsg.isEmpty() ) Riu3DMainWindowTools::reportAndShowWarning( "Required data missing", errMsg );
return nullptr;
}
return result;
};
RigFemScalarResultFrames* srcPORDataFrames = loadFrameLambda( RigFemAddressDefines::nodalPorBarAddress() );
// Volumetric Strain
RigFemScalarResultFrames* srcEVDataFrames = loadFrameLambda( RigFemResultAddress( resAddr.resultPosType, "NE", "EV" ) );
// Vertical Strain
RigFemScalarResultFrames* verticalStrainDataFrames = loadFrameLambda( RigFemResultAddress( resAddr.resultPosType, "NE", "E33" ) );
// Biot porelastic coefficient (alpha)
RigFemScalarResultFrames* biotCoefficient = nullptr;
if ( !m_resultCollection->biotResultAddress().isEmpty() )
{
biotCoefficient = loadFrameLambda( RigFemResultAddress( RIG_ELEMENT, m_resultCollection->biotResultAddress().toStdString(), "" ) );
}
QString youngsErrMsg = QString( "Failed to compute %1\n" ).arg( QString::fromStdString( resAddr.componentName ) );
youngsErrMsg += "Missing Young's Modulus element data (MODULUS)";
RigFemScalarResultFrames* youngsModuliFrames = loadFrameLambda( RigFemResultAddress( RIG_ELEMENT, "MODULUS", "" ), youngsErrMsg );
if ( !youngsModuliFrames ) return nullptr;
QString poissonError = QString( "Failed to compute %1\n" ).arg( QString::fromStdString( resAddr.componentName ) );
poissonError += "Missing Poisson Ratio element data (RATIO)";
RigFemScalarResultFrames* poissonRatioFrames = loadFrameLambda( RigFemResultAddress( RIG_ELEMENT, "RATIO", "" ), poissonError );
if ( !poissonRatioFrames ) return nullptr;
RigFemScalarResultFrames* voidRatioFrames = loadFrameLambda( RigFemResultAddress( resAddr.resultPosType, "VOIDR", "" ) );
RigFemScalarResultFrames* poreCompressibilityFrames =
m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resAddr.resultPosType, resAddr.fieldName, "PORE" ) );
RigFemScalarResultFrames* verticalCompressibilityFrames =
m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resAddr.resultPosType, resAddr.fieldName, "VERTICAL" ) );
RigFemScalarResultFrames* verticalCompressibilityRatioFrames =
m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resAddr.resultPosType, resAddr.fieldName, "VERTICAL-RATIO" ) );
const RigFemPart* femPart = m_resultCollection->parts()->part( partIndex );
float inf = std::numeric_limits<float>::infinity();
int refStepIdx, refFrameIdx;
std::tie( refStepIdx, refFrameIdx ) = m_resultCollection->referenceStepAndFrameIndex();
const int timeSteps = srcEVDataFrames->timeStepCount();
for ( int stepIdx = 0; stepIdx < timeSteps; stepIdx++ )
{
auto task = stepCountProgress.task( QString( "Step %1" ).arg( stepIdx ) );
const int frameCount = srcEVDataFrames->frameCount( stepIdx );
for ( int fIdx = 0; fIdx < frameCount; fIdx++ )
{
const std::vector<float>& evData = srcEVDataFrames->frameData( stepIdx, fIdx );
const std::vector<float>& referenceEvData = srcEVDataFrames->frameData( refStepIdx, refFrameIdx );
const std::vector<float>& verticalStrainData = verticalStrainDataFrames->frameData( stepIdx, fIdx );
const std::vector<float>& referenceVerticalStrainData = verticalStrainDataFrames->frameData( refStepIdx, refFrameIdx );
const std::vector<float>& youngsModuliData = youngsModuliFrames->frameData( stepIdx, fIdx );
const std::vector<float>& poissonRatioData = poissonRatioFrames->frameData( stepIdx, fIdx );
const std::vector<float>& voidRatioData = voidRatioFrames->frameData( 0, 0 );
const std::vector<float>& referencePorFrameData = srcPORDataFrames->frameData( refStepIdx, refFrameIdx );
const std::vector<float>& porFrameData = srcPORDataFrames->frameData( stepIdx, fIdx );
std::vector<float>& poreCompressibilityFrameData = poreCompressibilityFrames->frameData( stepIdx, fIdx );
std::vector<float>& verticalCompressibilityFrameData = verticalCompressibilityFrames->frameData( stepIdx, fIdx );
std::vector<float>& verticalCompressibilityRatioFrameData = verticalCompressibilityRatioFrames->frameData( stepIdx, fIdx );
size_t valCount = evData.size();
poreCompressibilityFrameData.resize( valCount );
verticalCompressibilityFrameData.resize( valCount );
verticalCompressibilityRatioFrameData.resize( valCount );
int elementCount = femPart->elementCount();
std::vector<float> biotData;
if ( biotCoefficient )
{
biotData = biotCoefficient->frameData( stepIdx, fIdx );
if ( !m_resultCollection->isValidBiotData( biotData, elementCount ) )
{
m_resultCollection->deleteResult( resAddr );
return nullptr;
}
}
#pragma omp parallel for
for ( int elmIdx = 0; elmIdx < elementCount; ++elmIdx )
{
RigElementType elmType = femPart->elementType( elmIdx );
int elmNodeCount = RigFemTypes::elementNodeCount( femPart->elementType( elmIdx ) );
if ( elmType == HEX8P )
{
for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx )
{
size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx );
if ( elmNodResIdx < evData.size() )
{
if ( ( fIdx == refFrameIdx ) && ( stepIdx == refStepIdx ) )
{
// The time step and the reference time step are the same: results undefined
poreCompressibilityFrameData[elmNodResIdx] = inf;
verticalCompressibilityFrameData[elmNodResIdx] = inf;
verticalCompressibilityRatioFrameData[elmNodResIdx] = inf;
}
else
{
// Use biot coefficient for all timesteps
double biotCoefficient = 1.0;
if ( biotData.empty() )
{
biotCoefficient = m_resultCollection->biotFixedFactor();
}
else
{
// Use coefficient from element property table
biotCoefficient = biotData[elmIdx];
}
int nodeIdx = femPart->nodeIdxFromElementNodeResultIdx( elmNodResIdx );
// Calculate bulk modulus for solids (grains).
// Incoming unit for Young's Modulus is GPa: convert to Pa.
double poissonRatio = poissonRatioData[elmIdx];
double youngsModuli = RiaEclipseUnitTools::gigaPascalToPascal( youngsModuliData[elmIdx] );
double bulkModulusFrame = youngsModuli / ( 3.0 * ( 1.0 - 2.0 * poissonRatio ) );
double bulkModulus = bulkModulusFrame / ( 1.0 - biotCoefficient );
// Calculate initial porosity (always from geostatic timestep)
double voidr = voidRatioData[elmNodResIdx];
double porosity = voidr / ( 1.0 + voidr );
// Calculate difference in pore pressure between reference state and this state,
// and convert unit from Bar to Pascal.
double referencePorePressure = referencePorFrameData[nodeIdx];
double framePorePressure = porFrameData[nodeIdx];
double deltaPorePressure = RiaEclipseUnitTools::barToPascal( framePorePressure - referencePorePressure );
// Calculate pore compressibility
double poreCompressibility = inf;
if ( deltaPorePressure != 0.0 && porosity != 0.0 )
{
double deltaEv = evData[elmNodResIdx] - referenceEvData[elmNodResIdx];
poreCompressibility = -( biotCoefficient * deltaEv ) / ( deltaPorePressure * porosity );
// Guard against divide by zero: second term can be ignored when bulk modulus is
// zero, which can happens when biot coefficient is 1.0
if ( biotCoefficient != 1.0 && porosity != 1.0 )
{
poreCompressibility += ( 1.0 / bulkModulus ) * ( biotCoefficient / porosity - 1.0 );
}
}
// Convert from 1/Pa to 1/GPa
poreCompressibilityFrameData[elmNodResIdx] = poreCompressibility * 1.0e9;
double verticalCompressibility = inf;
double verticalCompressibilityRatio = inf;
if ( biotCoefficient != 0.0 && deltaPorePressure != 0.0 )
{
double deltaStrain = verticalStrainData[elmNodResIdx] - referenceVerticalStrainData[elmNodResIdx];
// Calculate vertical compressibility (unit: 1/Pa)
verticalCompressibility = -deltaStrain / ( biotCoefficient * deltaPorePressure );
// Calculate vertical compressibility ratio
verticalCompressibilityRatio = ( verticalCompressibility * youngsModuli * ( 1.0 - poissonRatio ) ) /
( ( 1.0 + poissonRatio ) * ( 1.0 - 2.0 * poissonRatio ) );
}
// Convert from 1/Pa to 1/GPa
verticalCompressibilityFrameData[elmNodResIdx] = verticalCompressibility * 1.0e9;
verticalCompressibilityRatioFrameData[elmNodResIdx] = verticalCompressibilityRatio;
}
}
}
}
else
{
for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx )
{
size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx );
if ( elmNodResIdx < poreCompressibilityFrameData.size() )
{
poreCompressibilityFrameData[elmNodResIdx] = inf;
}
}
}
}
}
}
RigFemScalarResultFrames* requestedResultFrames = m_resultCollection->findOrLoadScalarResult( partIndex, resAddr );
return requestedResultFrames;
}