ResInsight/ApplicationLibCode/ReservoirDataModel/RigStimPlanFractureDefinition.cpp
2023-08-07 13:38:27 +02:00

779 lines
31 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 - Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigStimPlanFractureDefinition.h"
#include "RiaEclipseUnitTools.h"
#include "RiaFractureDefines.h"
#include "RiaLogging.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigStatisticsMath.h"
#include "RivWellFracturePartMgr.h"
#include "cafAssert.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
/// Internal functions
//--------------------------------------------------------------------------------------------------
size_t findMirrorXIndex( std::vector<double> xs );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const double RigStimPlanFractureDefinition::THRESHOLD_VALUE = 1e-5;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanFractureDefinition::RigStimPlanFractureDefinition()
: m_unitSet( RiaDefines::EclipseUnitSystem::UNITS_UNKNOWN )
, m_xMirrorMode( false )
, m_topPerfTvd( HUGE_VAL )
, m_bottomPerfTvd( HUGE_VAL )
, m_topPerfMd( HUGE_VAL )
, m_bottomPerfMd( HUGE_VAL )
, m_formationDip( HUGE_VAL )
, m_orientation( Orientation::UNDEFINED )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanFractureDefinition::~RigStimPlanFractureDefinition()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::EclipseUnitSystem RigStimPlanFractureDefinition::unitSet() const
{
return m_unitSet;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::xCount() const
{
return m_Xs.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::yCount() const
{
return m_Ys.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::minDepth() const
{
return -minY();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::maxDepth() const
{
return -maxY();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::topPerfTvd() const
{
return m_topPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::bottomPerfTvd() const
{
return m_bottomPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::minY() const
{
CAF_ASSERT( !m_Ys.empty() );
return m_Ys[0];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::maxY() const
{
CAF_ASSERT( !m_Ys.empty() );
return m_Ys.back();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::ys() const
{
return m_Ys;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::xs() const
{
return m_Xs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStimPlanFractureDefinition::computeScaledXs( const std::vector<double>& xs, double scaleFactor )
{
std::vector<double> scaledXs;
// Scale using 0 as scaling anchor
for ( double x : xs )
{
if ( scaleFactor != 1.0 ) x *= scaleFactor;
scaledXs.push_back( x );
}
return scaledXs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>
RigStimPlanFractureDefinition::computeScaledYs( const std::vector<double>& ys, double scaleFactor, double wellPathIntersectionY )
{
std::vector<double> scaledYs;
// Scale using wellPathIntersectionY as scaling anchor
for ( double y : ys )
{
if ( scaleFactor != 1.0 ) y = ( y - wellPathIntersectionY ) * scaleFactor + wellPathIntersectionY;
scaledYs.push_back( y );
}
return scaledYs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setTvdToTopPerf( double topPerfTvd )
{
m_topPerfTvd = topPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setTvdToBottomPerf( double bottomPerfTvd )
{
m_bottomPerfTvd = bottomPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::topPerfMd() const
{
return m_topPerfMd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::bottomPerfMd() const
{
return m_bottomPerfMd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setMdToTopPerf( double topPerfMd )
{
m_topPerfMd = topPerfMd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setMdToBottomPerf( double bottomPerfMd )
{
m_bottomPerfMd = bottomPerfMd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::generateXsFromFileXs( bool xMirrorMode )
{
m_xMirrorMode = xMirrorMode;
m_Xs.clear();
if ( m_xMirrorMode )
{
size_t mirrorIndex = findMirrorXIndex( m_fileXs );
std::list<double> xs;
// Mirror positive X values
xs.push_back( m_fileXs[mirrorIndex] );
for ( size_t i = mirrorIndex + 1; i < m_fileXs.size(); i++ )
{
xs.push_front( -m_fileXs[i] );
xs.push_back( m_fileXs[i] );
}
m_Xs = std::vector<double>( xs.begin(), xs.end() );
}
else
{
m_Xs = m_fileXs;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>>
RigStimPlanFractureDefinition::generateDataLayoutFromFileDataLayout( std::vector<std::vector<double>> fileXYData ) const
{
if ( m_xMirrorMode )
{
std::vector<std::vector<double>> xyData;
size_t mirrorIndex = findMirrorXIndex( m_fileXs );
for ( const auto& yData : fileXYData )
{
std::list<double> xValues;
// Mirror positive X values
xValues.push_back( yData[mirrorIndex] );
for ( size_t x = mirrorIndex + 1; x < yData.size(); x++ )
{
xValues.push_front( yData[x] );
xValues.push_back( yData[x] );
}
xyData.push_back( std::vector<double>( xValues.begin(), xValues.end() ) );
}
return xyData;
}
else
{
return fileXYData;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigStimPlanFractureDefinition::numberOfParameterValuesOK( std::vector<std::vector<double>> propertyValuesAtTimestep ) const
{
size_t xCount = m_Xs.size();
if ( propertyValuesAtTimestep.size() != yCount() ) return false;
for ( const std::vector<double>& valuesAtDepthVector : propertyValuesAtTimestep )
{
if ( valuesAtDepthVector.size() != xCount ) return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStimPlanFractureDefinition::adjustedYCoordsAroundWellPathPosition( const std::vector<double>& ys,
double wellPathIntersectionAtFractureDepth )
{
std::vector<double> yRelativeToWellPath;
for ( double y : ys )
{
double adjustedDepth = y + wellPathIntersectionAtFractureDepth;
yRelativeToWellPath.push_back( adjustedDepth );
}
return yRelativeToWellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<QString, QString>> RigStimPlanFractureDefinition::getStimPlanPropertyNamesUnits() const
{
std::vector<std::pair<QString, QString>> propertyNamesUnits;
{
for ( const RigStimPlanResultFrames& stimPlanDataEntry : m_stimPlanResults )
{
propertyNamesUnits.push_back( std::make_pair( stimPlanDataEntry.resultName, stimPlanDataEntry.unit ) );
}
}
return propertyNamesUnits;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RigStimPlanFractureDefinition::conductivityValuesAtTimeStep( const QString& resultName,
int activeTimeStepIndex,
RiaDefines::EclipseUnitSystem requiredUnitSet ) const
{
std::vector<std::vector<double>> conductivityValues;
QString conductivityUnitTextOnFile;
std::vector<std::pair<QString, QString>> propertyNamesUnitsOnFile = getStimPlanPropertyNamesUnits();
for ( auto properyNameUnit : propertyNamesUnitsOnFile )
{
if ( resultName == properyNameUnit.first )
{
conductivityUnitTextOnFile = properyNameUnit.second;
}
}
if ( conductivityUnitTextOnFile.isEmpty() )
{
RiaLogging::error( "Did not find unit for conductivity on file" );
return conductivityValues;
}
conductivityValues = getDataAtTimeIndex( resultName, conductivityUnitTextOnFile, activeTimeStepIndex );
// Check that the data is in the required unit system.
// Convert if not the case.
if ( requiredUnitSet != unitSet() )
{
// Convert to the conductivity unit system used by the fracture template
// The conductivity value is used in the computations of transmissibility when exporting COMPDAT, and has unit
// md-m or md-ft This unit must match the unit used to represent coordinates of the grid used for export
for ( auto& yValues : conductivityValues )
{
for ( auto& xVal : yValues )
{
if ( requiredUnitSet == RiaDefines::EclipseUnitSystem::UNITS_FIELD )
{
xVal = RiaEclipseUnitTools::convertToFeet( xVal, conductivityUnitTextOnFile );
}
else if ( requiredUnitSet == RiaDefines::EclipseUnitSystem::UNITS_METRIC )
{
xVal = RiaEclipseUnitTools::convertToMeter( xVal, conductivityUnitTextOnFile );
}
}
}
}
return conductivityValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::cref<RigFractureGrid> RigStimPlanFractureDefinition::createFractureGrid( const QString& resultName,
int activeTimeStepIndex,
double xScaleFactor,
double yScaleFactor,
double wellPathIntersectionAtFractureDepth,
RiaDefines::EclipseUnitSystem requiredUnitSet ) const
{
std::vector<std::vector<double>> conductivityValues = conductivityValuesAtTimeStep( resultName, activeTimeStepIndex, requiredUnitSet );
if ( conductivityValues.empty() )
{
return nullptr;
}
std::vector<RigFractureCell> stimPlanCells;
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = std::make_pair( 0, 0 );
bool wellCenterStimPlanCellFound = false;
std::vector<double> scaledXs = computeScaledXs( m_Xs, xScaleFactor );
std::vector<double> scaledYs = computeScaledYs( m_Ys, yScaleFactor, -wellPathIntersectionAtFractureDepth );
std::vector<double> yCoordsAtNodes = adjustedYCoordsAroundWellPathPosition( scaledYs, wellPathIntersectionAtFractureDepth );
std::vector<double> xCoordsAtNodes = scaledXs;
std::vector<double> xCoords;
for ( int i = 0; i < static_cast<int>( xCoordsAtNodes.size() ) - 1; i++ )
xCoords.push_back( ( xCoordsAtNodes[i] + xCoordsAtNodes[i + 1] ) / 2 );
std::vector<double> depthCoords;
for ( int i = 0; i < static_cast<int>( yCoordsAtNodes.size() ) - 1; i++ )
depthCoords.push_back( ( yCoordsAtNodes[i] + yCoordsAtNodes[i + 1] ) / 2 );
for ( int i = 0; i < static_cast<int>( xCoords.size() ) - 1; i++ )
{
for ( int j = 0; j < static_cast<int>( depthCoords.size() ) - 1; j++ )
{
std::vector<cvf::Vec3d> cellPolygon;
cellPolygon.push_back( cvf::Vec3d( xCoords[i], depthCoords[j], 0.0 ) );
cellPolygon.push_back( cvf::Vec3d( xCoords[i + 1], depthCoords[j], 0.0 ) );
cellPolygon.push_back( cvf::Vec3d( xCoords[i + 1], depthCoords[j + 1], 0.0 ) );
cellPolygon.push_back( cvf::Vec3d( xCoords[i], depthCoords[j + 1], 0.0 ) );
RigFractureCell stimPlanCell( cellPolygon, i, j );
if ( !conductivityValues.empty() ) // Assuming vector to be of correct length, or no values
{
stimPlanCell.setConductivityValue( conductivityValues[j + 1][i + 1] );
}
else
{
stimPlanCell.setConductivityValue( cvf::UNDEFINED_DOUBLE );
}
// The well path is intersecting the fracture at origo in the fracture coordinate system
// Find the Stimplan cell where the well path is intersecting
if ( cellPolygon[0].x() <= 0.0 && cellPolygon[1].x() >= 0.0 )
{
if ( cellPolygon[1].y() >= 0.0 && cellPolygon[2].y() <= 0.0 )
{
wellCenterStimPlanCellIJ = std::make_pair( stimPlanCell.getI(), stimPlanCell.getJ() );
wellCenterStimPlanCellFound = true;
}
}
stimPlanCells.push_back( stimPlanCell );
}
}
if ( !wellCenterStimPlanCellFound )
{
RiaLogging::error( "Did not find stim plan cell at well crossing!" );
}
cvf::ref<RigFractureGrid> fractureGrid = new RigFractureGrid;
fractureGrid->setFractureCells( stimPlanCells );
fractureGrid->setWellCenterFractureCellIJ( wellCenterStimPlanCellIJ );
fractureGrid->setICellCount( m_Xs.size() - 2 );
fractureGrid->setJCellCount( m_Ys.size() - 2 );
fractureGrid->ensureCellSearchTreeIsBuilt();
return cvf::cref<RigFractureGrid>( fractureGrid.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>
RigStimPlanFractureDefinition::fractureGridResults( const QString& resultName, const QString& unitName, size_t timeStepIndex ) const
{
std::vector<double> fractureGridResults;
const std::vector<std::vector<double>>& resultValuesAtTimeStep = getDataAtTimeIndex( resultName, unitName, timeStepIndex );
for ( int i = 0; i < static_cast<int>( xCount() ) - 2; i++ )
{
for ( int j = 0; j < static_cast<int>( yCount() ) - 2; j++ )
{
if ( j + 1 < static_cast<int>( resultValuesAtTimeStep.size() ) && i + 1 < static_cast<int>( resultValuesAtTimeStep[j + 1].size() ) )
{
fractureGridResults.push_back( resultValuesAtTimeStep[j + 1][i + 1] );
}
else
{
fractureGridResults.push_back( HUGE_VAL );
}
}
}
return fractureGridResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::createFractureTriangleGeometry( double xScaleFactor,
double yScaleFactor,
double wellPathIntersectionAtFractureDepth,
const QString& fractureUserName,
std::vector<cvf::Vec3f>* vertices,
std::vector<cvf::uint>* triangleIndices ) const
{
std::vector<double> scaledXs = computeScaledXs( m_Xs, xScaleFactor );
std::vector<double> scaledYs = computeScaledYs( m_Ys, yScaleFactor, -wellPathIntersectionAtFractureDepth );
std::vector<double> xCoords = scaledXs;
cvf::uint lenXcoords = static_cast<cvf::uint>( xCoords.size() );
std::vector<double> adjustedYs = adjustedYCoordsAroundWellPathPosition( scaledYs, wellPathIntersectionAtFractureDepth );
for ( cvf::uint k = 0; k < adjustedYs.size(); k++ )
{
for ( cvf::uint i = 0; i < lenXcoords; i++ )
{
cvf::Vec3f node = cvf::Vec3f( xCoords[i], adjustedYs[k], 0 );
vertices->push_back( node );
if ( i < lenXcoords - 1 && k < adjustedYs.size() - 1 )
{
if ( xCoords[i] < THRESHOLD_VALUE )
{
// Upper triangle
triangleIndices->push_back( i + k * lenXcoords );
triangleIndices->push_back( ( i + 1 ) + k * lenXcoords );
triangleIndices->push_back( ( i + 1 ) + ( k + 1 ) * lenXcoords );
// Lower triangle
triangleIndices->push_back( i + k * lenXcoords );
triangleIndices->push_back( ( i + 1 ) + ( k + 1 ) * lenXcoords );
triangleIndices->push_back( ( i ) + ( k + 1 ) * lenXcoords );
}
else
{
// Upper triangle
triangleIndices->push_back( i + k * lenXcoords );
triangleIndices->push_back( ( i + 1 ) + k * lenXcoords );
triangleIndices->push_back( ( i ) + ( k + 1 ) * lenXcoords );
// Lower triangle
triangleIndices->push_back( ( i + 1 ) + k * lenXcoords );
triangleIndices->push_back( ( i + 1 ) + ( k + 1 ) * lenXcoords );
triangleIndices->push_back( ( i ) + ( k + 1 ) * lenXcoords );
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::timeSteps() const
{
return m_timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::addTimeStep( double time )
{
if ( !timeStepExists( time ) ) m_timeSteps.push_back( time );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigStimPlanFractureDefinition::timeStepExists( double timeStepValueToCheck ) const
{
for ( double timeStep : m_timeSteps )
{
if ( fabs( timeStepValueToCheck - timeStep ) < THRESHOLD_VALUE ) return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::getTimeStepIndex( double timeStepValue ) const
{
size_t index = 0;
while ( index < m_timeSteps.size() )
{
if ( fabs( m_timeSteps[index] - timeStepValue ) < 1e-4 )
{
return index;
}
index++;
}
return -1; // returns -1 if not found
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::totalNumberTimeSteps() const
{
return m_timeSteps.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::resultIndex( const QString& resultName, const QString& unit ) const
{
for ( size_t i = 0; i < m_stimPlanResults.size(); i++ )
{
if ( m_stimPlanResults[i].resultName == resultName && m_stimPlanResults[i].unit == unit )
{
return i;
}
}
return cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setDataAtTimeValue( const QString& resultName,
const QString& unit,
const std::vector<std::vector<double>>& data,
double timeStepValue )
{
size_t resIndex = resultIndex( resultName, unit );
if ( resIndex != cvf::UNDEFINED_SIZE_T )
{
m_stimPlanResults[resIndex].parameterValues[getTimeStepIndex( timeStepValue )] = data;
}
else
{
RigStimPlanResultFrames resultData;
resultData.resultName = resultName;
resultData.unit = unit;
std::vector<std::vector<std::vector<double>>> values( m_timeSteps.size() );
resultData.parameterValues = values;
resultData.parameterValues[getTimeStepIndex( timeStepValue )] = data;
m_stimPlanResults.push_back( resultData );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<std::vector<double>>&
RigStimPlanFractureDefinition::getDataAtTimeIndex( const QString& resultName, const QString& unit, size_t timeStepIndex ) const
{
size_t resIndex = resultIndex( resultName, unit );
if ( resIndex != cvf::UNDEFINED_SIZE_T )
{
if ( timeStepIndex < m_stimPlanResults[resIndex].parameterValues.size() )
{
return m_stimPlanResults[resIndex].parameterValues[timeStepIndex];
}
}
RiaLogging::error( "Requested parameter does not exists in stimPlan data" );
static std::vector<std::vector<double>> emptyVector;
return emptyVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::appendDataToResultStatistics( const QString& resultName,
const QString& unit,
MinMaxAccumulator& minMaxAccumulator,
PosNegAccumulator& posNegAccumulator ) const
{
size_t resIndex = resultIndex( resultName, unit );
if ( resIndex == cvf::UNDEFINED_SIZE_T ) return;
for ( const auto& timeValues : m_stimPlanResults[resIndex].parameterValues )
{
for ( const auto& values : timeValues )
{
minMaxAccumulator.addData( values );
posNegAccumulator.addData( values );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RigStimPlanFractureDefinition::conductivityResultNames() const
{
QStringList resultNames;
for ( const auto& stimPlanResult : m_stimPlanResults )
{
if ( stimPlanResult.resultName.contains( RiaDefines::conductivityResultName(), Qt::CaseInsensitive ) )
{
resultNames.push_back( stimPlanResult.resultName );
}
}
return resultNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t findMirrorXIndex( std::vector<double> xs )
{
size_t mirrorIndex = cvf::UNDEFINED_SIZE_T;
for ( size_t i = 0; i < xs.size(); i++ )
{
if ( xs[i] > -RigStimPlanFractureDefinition::THRESHOLD_VALUE )
{
mirrorIndex = i;
break;
}
}
return mirrorIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::formationDip() const
{
return m_formationDip;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setFormationDip( double formationDip )
{
m_formationDip = formationDip;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanFractureDefinition::Orientation RigStimPlanFractureDefinition::orientation() const
{
return m_orientation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setOrientation( RigStimPlanFractureDefinition::Orientation orientation )
{
m_orientation = orientation;
}