ResInsight/ApplicationCode/ReservoirDataModel/RigGeoMechWellLogExtractor.cpp

1365 lines
63 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
//==================================================================================================
///
//==================================================================================================
#include "RigGeoMechWellLogExtractor.h"
#include "RiaDefines.h"
#include "RiaWeightedMeanCalculator.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemTypes.h"
#include "RigGeoMechBoreHoleStressCalculator.h"
#include "RigGeoMechCaseData.h"
#include "RigWellLogExtractionTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "RigWellPathIntersectionTools.h"
#include "cafTensor3.h"
#include "cvfGeometryTools.h"
#include "cvfMath.h"
#include <QPolygonF>
#include <type_traits>
const double RigGeoMechWellLogExtractor::UNIT_WEIGHT_OF_WATER = 9.81 * 1000.0; // N / m^3
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor( RigGeoMechCaseData* aCase,
const RigWellPath* wellpath,
const std::string& wellCaseErrorMsgName )
: RigWellLogExtractor( wellpath, wellCaseErrorMsgName )
, m_caseData( aCase )
{
calculateIntersection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::performCurveDataSmoothing( int frameIndex,
std::vector<double>* mds,
std::vector<double>* tvds,
std::vector<double>* values,
const double smoothingTreshold )
{
CVF_ASSERT( mds && tvds && values );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
RigFemResultAddress shAddr( RIG_ELEMENT_NODAL, "ST", "S3" );
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
const std::vector<float>& unscaledShValues = resultCollection->resultValues( shAddr, 0, frameIndex );
const std::vector<float>& porePressures = resultCollection->resultValues( porBarResAddr, 0, frameIndex );
std::vector<float> interfaceShValues = interpolateInterfaceValues( shAddr, unscaledShValues );
std::vector<float> interfacePorePressures = interpolateInterfaceValues( porBarResAddr, porePressures );
std::vector<double> interfaceShValuesDbl( interfaceShValues.size(), std::numeric_limits<double>::infinity() );
std::vector<double> interfacePorePressuresDbl( interfacePorePressures.size(),
std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t i = 0; i < int64_t( m_intersections.size() ); ++i )
{
cvf::Vec3f centroid = cellCentroid( i );
double trueVerticalDepth = -centroid.z();
double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
double hydroStaticPorePressureBar = pascalToBar( effectiveDepthMeters * UNIT_WEIGHT_OF_WATER );
interfaceShValuesDbl[i] = interfaceShValues[i] / hydroStaticPorePressureBar;
interfacePorePressuresDbl[i] = interfacePorePressures[i];
}
if ( !mds->empty() && !values->empty() )
{
std::vector<std::vector<double>*> dependentValues = {tvds, &interfaceShValuesDbl, &interfacePorePressuresDbl};
std::vector<unsigned char> smoothOrFilterSegments = determineFilteringOrSmoothing( interfacePorePressuresDbl );
filterShortSegments( mds, values, &smoothOrFilterSegments, dependentValues );
filterColinearSegments( mds, values, &smoothOrFilterSegments, dependentValues );
smoothSegments( mds, tvds, values, interfaceShValuesDbl, smoothOrFilterSegments, smoothingTreshold );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::curveData( const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values )
{
CVF_TIGHT_ASSERT( values );
if ( resAddr.resultPosType == RIG_WELLPATH_DERIVED )
{
if ( resAddr.fieldName == RiaDefines::wbsFGResultName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsSFGResultName().toStdString() )
{
wellBoreWallCurveData( resAddr, frameIndex, values );
return;
}
else if ( resAddr.fieldName == RiaDefines::wbsPoissonParameterName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsUCSParameterName().toStdString() )
{
wellPathParameters( resAddr, frameIndex, values );
}
else if ( resAddr.fieldName == RiaDefines::wbsPPResultName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsOBGResultName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsSHResultName().toStdString() )
{
wellPathScaledCurveData( resAddr, frameIndex, values );
return;
}
else if ( resAddr.fieldName == RiaDefines::wbsAzimuthResultName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsInclinationResultName().toStdString() )
{
wellPathAngles( resAddr, values );
return;
}
}
if ( !resAddr.isValid() ) return;
RigFemResultAddress convResAddr = resAddr;
// When showing POR results, always use the element nodal result,
// to get correct handling of elements without POR results
if ( convResAddr.fieldName == "POR-Bar" ) convResAddr.resultPosType = RIG_ELEMENT_NODAL;
CVF_ASSERT( resAddr.resultPosType != RIG_WELLPATH_DERIVED );
const std::vector<float>& resultValues = m_caseData->femPartResults()->resultValues( convResAddr, 0, frameIndex );
if ( !resultValues.size() ) return;
values->resize( m_intersections.size() );
for ( size_t intersectionIdx = 0; intersectionIdx < m_intersections.size(); ++intersectionIdx )
{
( *values )[intersectionIdx] = static_cast<double>(
interpolateGridResultValue<float>( convResAddr.resultPosType, resultValues, intersectionIdx ) );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<float, RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::calculatePorePressureInSegment(
int64_t intersectionIdx,
double effectiveDepthMeters,
const std::vector<float>& interpolatedInterfacePorePressuresBar,
const std::vector<float>& poreElementPressuresPascal ) const
{
// Priority 1: Try pore pressure from the grid
if ( m_porePressureSource == AUTO || m_porePressureSource == GRID )
{
float averagePorePressureBar = std::numeric_limits<float>::infinity();
bool validGridPorePressure = averageIntersectionValuesToSegmentValue( intersectionIdx,
interpolatedInterfacePorePressuresBar,
std::numeric_limits<float>::infinity(),
&averagePorePressureBar );
if ( validGridPorePressure )
{
return std::make_pair( averagePorePressureBar, GRID );
}
}
// Priority 2: Try LAS-file
if ( m_porePressureSource == AUTO || m_porePressureSource == LAS_FILE )
{
double lasMudWeightKgPerM3 = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndMudWeightKgPerM3 );
if ( lasMudWeightKgPerM3 != std::numeric_limits<double>::infinity() )
{
double specificMudWeightNPerM3 = lasMudWeightKgPerM3 * 9.81;
double porePressurePascal = specificMudWeightNPerM3 * effectiveDepthMeters;
double porePressureBar = pascalToBar( porePressurePascal );
return std::make_pair( (float)porePressureBar, LAS_FILE );
}
}
// Priority 3: Try element property tables
if ( m_porePressureSource == AUTO || m_porePressureSource == ELEMENT_PROPERTY_TABLE )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
if ( elmIdx < poreElementPressuresPascal.size() )
{
float porePressureBar = pascalToBar( poreElementPressuresPascal[elmIdx] );
return std::make_pair( porePressureBar, ELEMENT_PROPERTY_TABLE );
}
}
return std::make_pair( std::numeric_limits<float>::infinity(), INVALID );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<float, RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::calculatePoissonRatioInSegment( int64_t intersectionIdx,
const std::vector<float>& poissonRatios ) const
{
// Priority 1: Las-file poisson ratio
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == LAS_FILE )
{
if ( !m_wellLogMdAndPoissonRatios.empty() )
{
double lasPoissionRatio = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndPoissonRatios );
if ( lasPoissionRatio != std::numeric_limits<double>::infinity() )
{
return std::make_pair( (float)lasPoissionRatio, LAS_FILE );
}
}
}
// Priority 2: Element property table ratio
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == ELEMENT_PROPERTY_TABLE )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
if ( elmIdx < poissonRatios.size() )
{
return std::make_pair( poissonRatios[elmIdx], ELEMENT_PROPERTY_TABLE );
}
}
// Priority 3: User defined poisson ratio
return std::make_pair( (float)m_userDefinedPoissonRatio, USER_DEFINED );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<float, RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::calculateUcsInSegment( int64_t intersectionIdx,
const std::vector<float>& ucsValuesPascal ) const
{
if ( m_ucsSource == AUTO || m_ucsSource == LAS_FILE )
{
if ( !m_wellLogMdAndUcsBar.empty() )
{
double lasUniaxialStrengthInBar = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndUcsBar );
if ( lasUniaxialStrengthInBar != std::numeric_limits<double>::infinity() )
{
return std::make_pair( (float)lasUniaxialStrengthInBar, LAS_FILE );
}
}
}
// Priority 2: From element property table
if ( m_ucsSource == AUTO || m_ucsSource == ELEMENT_PROPERTY_TABLE )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
if ( elmIdx < ucsValuesPascal.size() )
{
// Read UCS from element table in Pascal
double uniaxialStrengthInBar = pascalToBar( ucsValuesPascal[elmIdx] );
return std::make_pair( (float)uniaxialStrengthInBar, ELEMENT_PROPERTY_TABLE );
}
}
// Priority 3: User defined UCS (in bar)
return std::make_pair( (float)m_userDefinedUcs, USER_DEFINED );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellPathAngles( const RigFemResultAddress& resAddr, std::vector<double>* values )
{
CVF_ASSERT( values );
CVF_ASSERT( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" );
values->resize( m_intersections.size(), 0.0f );
const double epsilon = 1.0e-6 * 360;
const cvf::Vec3d trueNorth( 0.0, 1.0, 0.0 );
const cvf::Vec3d up( 0.0, 0.0, 1.0 );
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentFollowWellPathSegments );
// Deviation from vertical. Since well path is tending downwards we compare with negative z.
double inclination = cvf::Math::toDegrees(
std::acos( cvf::Vec3d( 0.0, 0.0, -1.0 ) * wellPathTangent.getNormalized() ) );
if ( resAddr.fieldName == "Azimuth" )
{
double azimuth = HUGE_VAL;
// Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the plot.
if ( cvf::Math::valueInRange( inclination, epsilon, 180.0 - epsilon ) )
{
cvf::Vec3d projectedTangentXY = wellPathTangent;
projectedTangentXY.z() = 0.0;
// Do tangentXY to true north for clockwise angles.
double dotProduct = projectedTangentXY * trueNorth;
double crossProduct = ( projectedTangentXY ^ trueNorth ) * up;
// http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx
azimuth = cvf::Math::toDegrees( std::atan2( crossProduct, dotProduct ) );
if ( azimuth < 0.0 )
{
// Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180
// where the negative angles are counter clockwise.
// To get all positive clockwise angles, we add 360 degrees to negative angles.
azimuth = azimuth + 360.0;
}
}
( *values )[intersectionIdx] = azimuth;
}
else
{
( *values )[intersectionIdx] = inclination;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellPathScaledCurveData( const RigFemResultAddress& resAddr,
int frameIndex,
std::vector<double>* values )
{
CVF_ASSERT( values );
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
std::string nativeFieldName;
std::string nativeCompName;
if ( resAddr.fieldName == "PP" )
{
nativeFieldName = "POR-Bar"; // More likely to be in memory than POR
}
else if ( resAddr.fieldName == "OBG" )
{
nativeFieldName = "ST";
nativeCompName = "S33";
}
else if ( resAddr.fieldName == "SH" )
{
nativeFieldName = "ST";
nativeCompName = "S3";
}
RigFemResultAddress nativeAddr( RIG_ELEMENT_NODAL, nativeFieldName, nativeCompName );
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
const std::vector<float>& unscaledResultValues = resultCollection->resultValues( nativeAddr, 0, frameIndex );
const std::vector<float>& poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr,
0,
frameIndex );
std::vector<float> interpolatedInterfaceValues = interpolateInterfaceValues( nativeAddr, unscaledResultValues );
values->resize( m_intersections.size(), 0.0f );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
// Set the value to invalid by default
( *values )[intersectionIdx] = std::numeric_limits<double>::infinity();
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
double trueVerticalDepth = -centroid.z();
double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
double hydroStaticPorePressureBar = pascalToBar( effectiveDepthMeters * UNIT_WEIGHT_OF_WATER );
float averageUnscaledValue = std::numeric_limits<float>::infinity();
if ( resAddr.fieldName == "PP" )
{
auto ppSourcePair = calculatePorePressureInSegment( intersectionIdx,
effectiveDepthMeters,
interpolatedInterfaceValues,
poreElementPressuresPascal );
if ( ppSourcePair.second == INVALID )
{
averageUnscaledValue = hydroStaticPorePressureBar;
}
else
{
averageUnscaledValue = ppSourcePair.first;
}
}
else
{
averageIntersectionValuesToSegmentValue( intersectionIdx,
interpolatedInterfaceValues,
std::numeric_limits<float>::infinity(),
&averageUnscaledValue );
}
( *values )[intersectionIdx] = static_cast<double>( averageUnscaledValue ) / hydroStaticPorePressureBar;
}
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellBoreWallCurveData( const RigFemResultAddress& resAddr,
int frameIndex,
std::vector<double>* values )
{
CVF_ASSERT( values );
CVF_ASSERT( resAddr.fieldName == RiaDefines::wbsFGResultName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsSFGResultName().toStdString() );
// The result addresses needed
RigFemResultAddress stressResAddr( RIG_ELEMENT_NODAL, "ST", "" );
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
// Allow POR as an element property value
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
RigFemResultAddress poissonResAddr( RIG_ELEMENT, "RATIO", "" );
RigFemResultAddress ucsResAddr( RIG_ELEMENT, "UCS", "" );
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
// Load results
std::vector<caf::Ten3f> vertexStressesFloat = resultCollection->tensors( stressResAddr, 0, frameIndex );
if ( !vertexStressesFloat.size() ) return;
std::vector<caf::Ten3d> vertexStresses;
vertexStresses.reserve( vertexStressesFloat.size() );
for ( const caf::Ten3f& floatTensor : vertexStressesFloat )
{
vertexStresses.push_back( caf::Ten3d( floatTensor ) );
}
std::vector<float> porePressures = resultCollection->resultValues( porBarResAddr, 0, frameIndex );
std::vector<float> poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr, 0, frameIndex );
std::vector<float> poissonRatios = resultCollection->resultValues( poissonResAddr, 0, frameIndex );
std::vector<float> ucsValuesPascal = resultCollection->resultValues( ucsResAddr, 0, frameIndex );
std::vector<float> interpolatedInterfacePorePressuresBar = interpolateInterfaceValues<float>( porBarResAddr,
porePressures );
std::vector<caf::Ten3d> interpolatedInterfaceStressBar = interpolateInterfaceValues<caf::Ten3d>( stressResAddr,
vertexStresses );
values->resize( m_intersections.size(), 0.0f );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
double trueVerticalDepth = -centroid.z();
double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
double hydroStaticPorePressureBar = pascalToBar( effectiveDepthMeters * UNIT_WEIGHT_OF_WATER );
auto ppSourcePair = calculatePorePressureInSegment( intersectionIdx,
effectiveDepthMeters,
interpolatedInterfacePorePressuresBar,
poreElementPressuresPascal );
double porePressureBar = ppSourcePair.first;
// FG is for sands, SFG for shale. Sands has valid PP, shale does not.
bool isFGregion = ppSourcePair.second != INVALID;
if ( ppSourcePair.second == INVALID )
{
porePressureBar = hydroStaticPorePressureBar;
}
double poissonRatio = calculatePoissonRatioInSegment( intersectionIdx, poissonRatios ).first;
double ucsBar = calculateUcsInSegment( intersectionIdx, ucsValuesPascal ).first;
caf::Ten3d segmentStress;
bool validSegmentStress = averageIntersectionValuesToSegmentValue( intersectionIdx,
interpolatedInterfaceStressBar,
caf::Ten3d::invalid(),
&segmentStress );
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentConstantWithinCell );
caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation( wellPathTangent, segmentStress );
caf::Ten3d wellPathStressDouble( wellPathStressFloat );
RigGeoMechBoreHoleStressCalculator sigmaCalculator( wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32 );
double resultValue = std::numeric_limits<double>::infinity();
if ( resAddr.fieldName == RiaDefines::wbsFGResultName().toStdString() )
{
if ( isFGregion && validSegmentStress )
{
resultValue = sigmaCalculator.solveFractureGradient();
}
}
else
{
CVF_ASSERT( resAddr.fieldName == RiaDefines::wbsSFGResultName().toStdString() );
if ( !isFGregion && validSegmentStress )
{
resultValue = sigmaCalculator.solveStassiDalia();
}
}
if ( resultValue != std::numeric_limits<double>::infinity() )
{
if ( hydroStaticPorePressureBar > 1.0e-8 )
{
resultValue /= hydroStaticPorePressureBar;
}
}
( *values )[intersectionIdx] = resultValue;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellPathParameters( const RigFemResultAddress& resAddr,
int frameIndex,
std::vector<double>* values )
{
CVF_ASSERT( values );
CVF_ASSERT( resAddr.fieldName == RiaDefines::wbsPoissonParameterName().toStdString() ||
resAddr.fieldName == RiaDefines::wbsUCSParameterName().toStdString() );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
// Check for element property values
RigFemResultAddress elmResAddr( RIG_ELEMENT, resAddr.fieldName, "" );
std::vector<float> elmPropertyValues = resultCollection->resultValues( elmResAddr, 0, frameIndex );
values->resize( m_intersections.size(), 0.0f );
if ( resAddr.fieldName == RiaDefines::wbsPoissonParameterName().toStdString() )
{
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
( *values )[intersectionIdx] = calculatePoissonRatioInSegment( intersectionIdx, elmPropertyValues ).first;
}
}
else
{
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
( *values )[intersectionIdx] = calculateUcsInSegment( intersectionIdx, elmPropertyValues ).first / 100.0;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData()
{
return m_caseData.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setRkbDiff( double rkbDiff )
{
m_rkbDiff = rkbDiff;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWellLogMdAndMudWeightKgPerM3( const std::vector<std::pair<double, double>>& porePressures )
{
m_wellLogMdAndMudWeightKgPerM3 = porePressures;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWellLogMdAndUcsBar( const std::vector<std::pair<double, double>>& ucsValues )
{
m_wellLogMdAndUcsBar = ucsValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWellLogMdAndPoissonRatio( const std::vector<std::pair<double, double>>& poissonRatios )
{
m_wellLogMdAndPoissonRatios = poissonRatios;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForPorePressure()
{
return {AUTO, GRID, LAS_FILE, ELEMENT_PROPERTY_TABLE, HYDROSTATIC_PP};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForPoissonRatio()
{
return {AUTO, LAS_FILE, ELEMENT_PROPERTY_TABLE, USER_DEFINED};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForUcs()
{
return {AUTO, LAS_FILE, ELEMENT_PROPERTY_TABLE, USER_DEFINED};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWbsParameters( WbsParameterSource porePressureSource,
WbsParameterSource poissonRatioSource,
WbsParameterSource ucsSource,
double userDefinedPoissonRatio,
double userDefinedUcs )
{
m_porePressureSource = porePressureSource;
m_poissonRatioSource = poissonRatioSource;
m_ucsSource = ucsSource;
m_userDefinedPoissonRatio = userDefinedPoissonRatio;
m_userDefinedUcs = userDefinedUcs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::porePressureIntervals( int frameIndex )
{
std::vector<double> ppValues( m_intersections.size(), 0.0 );
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
const std::vector<float>& porePressures = resultCollection->resultValues( porBarResAddr, 0, frameIndex );
const std::vector<float>& poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr,
0,
frameIndex );
std::vector<float> interpolatedInterfacePorePressureBar;
interpolatedInterfacePorePressureBar.resize( m_intersections.size(), std::numeric_limits<float>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
interpolatedInterfacePorePressureBar[intersectionIdx] = interpolateGridResultValue( porBarResAddr.resultPosType,
porePressures,
intersectionIdx );
}
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
auto ppSourcePair = calculatePorePressureInSegment( intersectionIdx,
0.0,
interpolatedInterfacePorePressureBar,
poreElementPressuresPascal );
if ( ppSourcePair.second == INVALID )
{
ppValues[intersectionIdx] = static_cast<double>( HYDROSTATIC_PP );
}
else
{
ppValues[intersectionIdx] = static_cast<double>( ppSourcePair.second );
}
}
return ppValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::poissonIntervals( int frameIndex )
{
std::vector<double> poissonValues( m_intersections.size(), 0.0 );
RigFemResultAddress poissonResAddr( RIG_ELEMENT, "RATIO", "" );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
std::vector<float> poissonRatios = resultCollection->resultValues( poissonResAddr, 0, frameIndex );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
auto poissonSourcePair = calculatePoissonRatioInSegment( intersectionIdx, poissonRatios );
poissonValues[intersectionIdx] = static_cast<double>( poissonSourcePair.second );
}
return poissonValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::ucsIntervals( int frameIndex )
{
std::vector<double> ucsValues( m_intersections.size(), 0.0 );
RigFemResultAddress ucsResAddr( RIG_ELEMENT, "UCS", "" );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
std::vector<float> ucsValuesPascal = resultCollection->resultValues( ucsResAddr, 0, frameIndex );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
auto ucsSourcePair = calculateUcsInSegment( intersectionIdx, ucsValuesPascal );
ucsValues[intersectionIdx] = static_cast<double>( ucsSourcePair.second );
}
return ucsValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
T RigGeoMechWellLogExtractor::interpolateGridResultValue( RigFemResultPosEnum resultPosType,
const std::vector<T>& gridResultValues,
int64_t intersectionIdx ) const
{
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) return T();
if ( resultPosType == RIG_FORMATION_NAMES )
{
resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
}
if ( resultPosType == RIG_ELEMENT )
{
return gridResultValues[elmIdx];
}
cvf::StructGridInterface::FaceType cellFace = m_intersectedCellFaces[intersectionIdx];
if ( cellFace == cvf::StructGridInterface::NO_FACE )
{
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
{
return std::numeric_limits<T>::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on a face.
}
// TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates.
// For now just pick the average value for the cell.
size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType,
static_cast<int>( elmIdx ),
0 );
T sumOfVertexValues = gridResultValues[gridResultValueIdx];
for ( int i = 1; i < 8; ++i )
{
gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), i );
sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx];
}
return sumOfVertexValues * ( 1.0 / 8.0 );
}
int faceNodeCount = 0;
const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, cellFace, &faceNodeCount );
const int* elmNodeIndices = femPart->connectivities( elmIdx );
cvf::Vec3d v0( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]] );
cvf::Vec3d v1( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]] );
cvf::Vec3d v2( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]] );
cvf::Vec3d v3( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]] );
std::vector<size_t> nodeResIdx( 4, cvf::UNDEFINED_SIZE_T );
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
{
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
{
nodeResIdx[i] = gridResultIndexFace( elmIdx, cellFace, static_cast<int>( i ) );
}
else
{
nodeResIdx[i] = femPart->resultValueIdxFromResultPosType( resultPosType,
static_cast<int>( elmIdx ),
elementLocalIndicesForFace[i] );
}
}
std::vector<T> nodeResultValues;
nodeResultValues.reserve( 4 );
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
{
nodeResultValues.push_back( gridResultValues[nodeResIdx[i]] );
}
T interpolatedValue = cvf::GeometryTools::interpolateQuad<T>( v0,
nodeResultValues[0],
v1,
nodeResultValues[1],
v2,
nodeResultValues[2],
v3,
nodeResultValues[3],
m_intersections[intersectionIdx] );
return interpolatedValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigGeoMechWellLogExtractor::gridResultIndexFace( size_t elementIdx,
cvf::StructGridInterface::FaceType cellFace,
int faceLocalNodeIdx ) const
{
CVF_ASSERT( cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4 );
return elementIdx * 24 + static_cast<int>( cellFace ) * 4 + faceLocalNodeIdx;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::calculateIntersection()
{
CVF_ASSERT( m_caseData->femParts()->partCount() == 1 );
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo> uniqueIntersections;
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
for ( size_t wpp = 0; wpp < m_wellPath->m_wellPathPoints.size() - 1; ++wpp )
{
std::vector<HexIntersectionInfo> intersections;
cvf::Vec3d p1 = m_wellPath->m_wellPathPoints[wpp];
cvf::Vec3d p2 = m_wellPath->m_wellPathPoints[wpp + 1];
cvf::BoundingBox bb;
bb.add( p1 );
bb.add( p2 );
std::vector<size_t> closeCells = findCloseCells( bb );
cvf::Vec3d hexCorners[8];
for ( size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx )
{
RigElementType elmType = femPart->elementType( closeCells[ccIdx] );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
const int* cornerIndices = femPart->connectivities( closeCells[ccIdx] );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
// int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners,
// closeCells[ccIdx], &intersections);
RigHexIntersectionTools::lineHexCellIntersection( p1, p2, hexCorners, closeCells[ccIdx], &intersections );
}
// Now, with all the intersections of this piece of line, we need to
// sort them in order, and set the measured depth and corresponding cell index
// Inserting the intersections in this map will remove identical intersections
// and sort them according to MD, CellIdx, Leave/enter
double md1 = m_wellPath->m_measuredDepths[wpp];
double md2 = m_wellPath->m_measuredDepths[wpp + 1];
insertIntersectionsInMap( intersections, p1, md1, p2, md2, &uniqueIntersections );
}
this->populateReturnArrays( uniqueIntersections );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells( const cvf::BoundingBox& bb )
{
std::vector<size_t> closeCells;
if ( m_caseData->femParts()->partCount() )
{
m_caseData->femParts()->part( 0 )->findIntersectingCells( bb, &closeCells );
}
return closeCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell( size_t cellIndex,
const cvf::Vec3d& startPoint,
const cvf::Vec3d& endPoint ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
const int* cornerIndices = femPart->connectivities( cellIndex );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
return RigWellPathIntersectionTools::calculateLengthInCell( hexCorners, startPoint, endPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent( int64_t intersectionIdx,
WellPathTangentCalculation calculationType ) const
{
if ( calculationType == TangentFollowWellPathSegments )
{
cvf::Vec3d segmentStart, segmentEnd;
m_wellPath->twoClosestPoints( m_intersections[intersectionIdx], &segmentStart, &segmentEnd );
return ( segmentEnd - segmentStart ).getNormalized();
}
else
{
cvf::Vec3d wellPathTangent;
if ( intersectionIdx % 2 == 0 )
{
wellPathTangent = m_intersections[intersectionIdx + 1] - m_intersections[intersectionIdx];
}
else
{
wellPathTangent = m_intersections[intersectionIdx] - m_intersections[intersectionIdx - 1];
}
CVF_ASSERT( wellPathTangent.length() > 1.0e-7 );
return wellPathTangent.getNormalized();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation( const cvf::Vec3d& wellPathTangent,
const caf::Ten3d& tensor )
{
// Create local coordinate system for well path segment
cvf::Vec3d local_z = wellPathTangent;
cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized();
cvf::Vec3d local_y = ( local_z ^ local_x ).getNormalized();
// Calculate the rotation matrix from global i, j, k to local x, y, z.
cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes( &local_x, &local_y, &local_z );
return tensor.rotated( rotationMatrix.toMatrix3() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid( size_t intersectionIdx ) const
{
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
int elementNodeCount = RigFemTypes::elmentNodeCount( elmType );
const int* elmNodeIndices = femPart->connectivities( elmIdx );
cvf::Vec3f centroid( 0.0, 0.0, 0.0 );
for ( int i = 0; i < elementNodeCount; ++i )
{
centroid += nodeCoords[elmNodeIndices[i]];
}
return centroid / elementNodeCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::getWellLogSegmentValue( size_t intersectionIdx,
const std::vector<std::pair<double, double>>& wellLogValues ) const
{
if ( !wellLogValues.empty() )
{
double startMD, endMD;
if ( intersectionIdx % 2 == 0 )
{
startMD = m_intersectionMeasuredDepths[intersectionIdx];
endMD = m_intersectionMeasuredDepths[intersectionIdx + 1];
}
else
{
startMD = m_intersectionMeasuredDepths[intersectionIdx - 1];
endMD = m_intersectionMeasuredDepths[intersectionIdx];
}
RiaWeightedMeanCalculator<double> averageCalc;
for ( auto& depthAndValue : wellLogValues )
{
if ( cvf::Math::valueInRange( depthAndValue.first, startMD, endMD ) )
{
cvf::Vec3d position = m_wellPath->interpolatedPointAlongWellPath( depthAndValue.first );
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
double weight = 1.0;
double dist = ( position - centroid ).length();
if ( dist > 1.0 )
{
weight = 1.0 / dist;
}
averageCalc.addValueAndWeight( depthAndValue.second, weight );
}
}
if ( averageCalc.validAggregatedWeight() )
{
return averageCalc.weightedMean();
}
}
return std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::pascalToBar( double pascalValue )
{
return pascalValue * 1.0e-5;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue( size_t intersectionIdx,
const std::vector<T>& values,
const T& invalidValue,
T* averagedCellValue ) const
{
CVF_ASSERT( values.size() >= 2 );
*averagedCellValue = invalidValue;
T value1, value2;
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
double dist1 = 0.0, dist2 = 0.0;
if ( intersectionIdx % 2 == 0 )
{
value1 = values[intersectionIdx];
value2 = values[intersectionIdx + 1];
dist1 = ( centroid - m_intersections[intersectionIdx] ).length();
dist2 = ( centroid - m_intersections[intersectionIdx + 1] ).length();
}
else
{
value1 = values[intersectionIdx - 1];
value2 = values[intersectionIdx];
dist1 = ( centroid - m_intersections[intersectionIdx - 1] ).length();
dist2 = ( centroid - m_intersections[intersectionIdx] ).length();
}
if ( invalidValue == value1 || invalidValue == value2 )
{
return false;
}
RiaWeightedMeanCalculator<T> averageCalc;
averageCalc.addValueAndWeight( value1, dist2 );
averageCalc.addValueAndWeight( value2, dist1 );
if ( averageCalc.validAggregatedWeight() )
{
*averagedCellValue = averageCalc.weightedMean();
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
std::vector<T> RigGeoMechWellLogExtractor::interpolateInterfaceValues( RigFemResultAddress nativeAddr,
const std::vector<T>& unscaledResultValues ) const
{
std::vector<T> interpolatedInterfaceValues;
initializeResultValues( interpolatedInterfaceValues, m_intersections.size() );
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
{
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
interpolatedInterfaceValues[intersectionIdx] = interpolateGridResultValue<T>( nativeAddr.resultPosType,
unscaledResultValues,
intersectionIdx );
}
return interpolatedInterfaceValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<float>& resultValues, size_t resultCount )
{
resultValues.resize( resultCount, std::numeric_limits<float>::infinity() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<caf::Ten3d>& resultValues, size_t resultCount )
{
resultValues.resize( resultCount );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::filterShortSegments( std::vector<double>* xValues,
std::vector<double>* yValues,
std::vector<unsigned char>* filterSegments,
std::vector<std::vector<double>*>& vectorOfDependentValues )
{
const double lengthEpsilon = 1.0e-3;
std::vector<double> simplerXValues;
std::vector<double> simplerYValues;
std::vector<unsigned char> simplerFilterSegments;
std::vector<std::vector<double>> simplerDependentValues( vectorOfDependentValues.size() );
simplerXValues.push_back( xValues->front() );
simplerYValues.push_back( yValues->front() );
simplerFilterSegments.push_back( filterSegments->front() );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
simplerDependentValues[n].push_back( vectorOfDependentValues[n]->front() );
}
for ( int64_t i = 1; i < int64_t( xValues->size() - 1 ); ++i )
{
cvf::Vec2d vecIn( ( ( *xValues )[i] - simplerXValues.back() ) / std::max( 1.0, simplerXValues.back() ),
( ( *yValues )[i] - simplerYValues.back() ) / std::max( 1.0, simplerYValues.back() ) );
if ( ( *filterSegments )[i] == 0u || vecIn.length() > lengthEpsilon )
{
simplerXValues.push_back( ( *xValues )[i] );
simplerYValues.push_back( ( *yValues )[i] );
simplerFilterSegments.push_back( ( *filterSegments )[i] );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
simplerDependentValues[n].push_back( ( *vectorOfDependentValues[n] )[i] );
}
}
}
simplerXValues.push_back( xValues->back() );
simplerYValues.push_back( yValues->back() );
simplerFilterSegments.push_back( filterSegments->back() );
for ( size_t i = 0; i < vectorOfDependentValues.size(); ++i )
{
simplerDependentValues[i].push_back( vectorOfDependentValues[i]->back() );
}
xValues->swap( simplerXValues );
yValues->swap( simplerYValues );
filterSegments->swap( simplerFilterSegments );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
vectorOfDependentValues[n]->swap( simplerDependentValues[n] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::filterColinearSegments( std::vector<double>* xValues,
std::vector<double>* yValues,
std::vector<unsigned char>* filterSegments,
std::vector<std::vector<double>*>& vectorOfDependentValues )
{
std::vector<double> simplerXValues;
std::vector<double> simplerYValues;
std::vector<unsigned char> simpledFilterSegments;
std::vector<std::vector<double>> simplerDependentValues( vectorOfDependentValues.size() );
simplerXValues.push_back( xValues->front() );
simplerYValues.push_back( yValues->front() );
simpledFilterSegments.push_back( filterSegments->front() );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
simplerDependentValues[n].push_back( vectorOfDependentValues[n]->front() );
}
for ( int64_t i = 1; i < int64_t( xValues->size() - 1 ); ++i )
{
cvf::Vec2d vecIn( ( ( *xValues )[i] - simplerXValues.back() ) / std::max( 1.0, simplerXValues.back() ),
( ( *yValues )[i] - simplerYValues.back() ) / std::max( 1.0, simplerYValues.back() ) );
cvf::Vec2d vecOut( ( ( *xValues )[i + 1] - ( *xValues )[i] ) / std::max( 1.0, ( *xValues )[i] ),
( ( *yValues )[i + 1] - ( *yValues )[i] ) / std::max( 1.0, ( *yValues )[i] ) );
vecIn.normalize();
vecOut.normalize();
double dotProduct = std::abs( vecIn * vecOut );
if ( ( *filterSegments )[i] == 0u || std::fabs( 1.0 - dotProduct ) > 1.0e-3 )
{
simplerXValues.push_back( ( *xValues )[i] );
simplerYValues.push_back( ( *yValues )[i] );
simpledFilterSegments.push_back( ( *filterSegments )[i] );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
simplerDependentValues[n].push_back( ( *vectorOfDependentValues[n] )[i] );
}
}
}
simplerXValues.push_back( xValues->back() );
simplerYValues.push_back( yValues->back() );
simpledFilterSegments.push_back( filterSegments->back() );
for ( size_t i = 0; i < vectorOfDependentValues.size(); ++i )
{
simplerDependentValues[i].push_back( vectorOfDependentValues[i]->back() );
}
xValues->swap( simplerXValues );
yValues->swap( simplerYValues );
filterSegments->swap( simpledFilterSegments );
for ( size_t n = 0; n < vectorOfDependentValues.size(); ++n )
{
vectorOfDependentValues[n]->swap( simplerDependentValues[n] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::smoothSegments( std::vector<double>* mds,
std::vector<double>* tvds,
std::vector<double>* values,
const std::vector<double>& interfaceShValues,
const std::vector<unsigned char>& smoothSegments,
const double smoothingThreshold )
{
const double eps = 1.0e-6;
double maxOriginalMd = ( *mds )[0];
double maxOriginalTvd = ( !tvds->empty() ) ? ( *tvds )[0] : 0.0;
for ( int64_t i = 1; i < int64_t( mds->size() - 1 ); ++i )
{
double originalMD = ( *mds )[i];
double originalTVD = ( !tvds->empty() ) ? ( *tvds )[i] : 0.0;
bool smoothSegment = smoothSegments[i] != 0u;
double diffMd = std::fabs( ( *mds )[i + 1] - ( *mds )[i] ) / std::max( eps, ( *mds )[i] );
double diffSh = std::fabs( interfaceShValues[i + 1] - interfaceShValues[i] ) /
std::max( eps, interfaceShValues[i] );
bool leapSh = diffSh > smoothingThreshold && diffMd < eps;
if ( smoothSegment )
{
if ( leapSh )
{
// Update depth of current
( *mds )[i] = 0.5 * ( ( *mds )[i] + maxOriginalMd );
if ( !tvds->empty() )
{
( *tvds )[i] = 0.5 * ( ( *tvds )[i] + maxOriginalTvd );
}
}
else
{
// Update depth of current
( *mds )[i] = ( *mds )[i - 1];
if ( !tvds->empty() )
{
( *tvds )[i] = ( *tvds )[i - 1];
}
}
double diffMd_m1 = std::fabs( ( *mds )[i] - ( *mds )[i - 1] );
if ( diffMd_m1 < ( *mds )[i] * eps && ( *values )[i - 1] != std::numeric_limits<double>::infinity() )
{
( *values )[i] = ( *values )[i - 1];
}
}
if ( leapSh )
{
maxOriginalMd = std::max( maxOriginalMd, originalMD );
maxOriginalTvd = std::max( maxOriginalTvd, originalTVD );
}
}
( *values )[0] = std::numeric_limits<float>::infinity();
}
//--------------------------------------------------------------------------------------------------
/// Note that this is unsigned char because std::vector<bool> is not thread safe
//--------------------------------------------------------------------------------------------------
std::vector<unsigned char>
RigGeoMechWellLogExtractor::determineFilteringOrSmoothing( const std::vector<double>& porePressures )
{
std::vector<unsigned char> smoothOrFilterSegments( porePressures.size(), false );
#pragma omp parallel for
for ( int64_t i = 1; i < int64_t( porePressures.size() - 1 ); ++i )
{
bool validPP_im1 = porePressures[i - 1] >= 0.0 && porePressures[i - 1] != std::numeric_limits<double>::infinity();
bool validPP_i = porePressures[i] >= 0.0 && porePressures[i] != std::numeric_limits<double>::infinity();
bool validPP_ip1 = porePressures[i + 1] >= 0.0 && porePressures[i + 1] != std::numeric_limits<double>::infinity();
bool anyValidPP = validPP_im1 || validPP_i || validPP_ip1;
smoothOrFilterSegments[i] = !anyValidPP;
}
return smoothOrFilterSegments;
}