ResInsight/ApplicationCode/ReservoirDataModel/RigNumberOfFloodedPoreVolumesCalculator.cpp
2019-11-04 15:08:09 +01:00

436 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
#include "RiaPorosityModel.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigReservoirBuilderMock.h"
#include "RimEclipseCase.h"
#include "RimReservoirCellResultsStorage.h"
#include "cafProgressInfo.h"
#include <QString>
#include <vector>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator( RimEclipseCase* caseToApply,
const std::vector<QString>& tracerNames )
{
RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
RigCaseCellResultsData* gridCellResults = caseToApply->results( RiaDefines::MATRIX_MODEL );
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::MATRIX_MODEL );
size_t resultCellCount = actCellInfo->reservoirCellResultCount();
size_t timeStepCount = caseToApply->eclipseCaseData()->results( RiaDefines::MATRIX_MODEL )->maxTimeStepCount();
size_t totalProgress = tracerNames.size() + 8 + timeStepCount + 2 * timeStepCount;
caf::ProgressInfo progress( totalProgress, "Calculating number of flooded mobile pore volumes." );
progress.setProgressDescription( "Loading required results" );
// PORV
const std::vector<double>* porvResults = nullptr;
std::vector<double> porvActiveCellsResultStorage;
porvResults = RigCaseCellResultsData::getResultIndexableStaticResult( actCellInfo,
gridCellResults,
"PORV",
porvActiveCellsResultStorage );
progress.incrementProgress();
// SWCR if defined
const std::vector<double>* swcrResults = nullptr;
swcrResults = RigCaseCellResultsData::getResultIndexableStaticResult( actCellInfo,
gridCellResults,
"SWCR",
porvActiveCellsResultStorage );
progress.incrementProgress();
std::vector<RigEclipseResultAddress> tracerResAddrs;
for ( QString tracerName : tracerNames )
{
RigEclipseResultAddress tracerResAddr( RiaDefines::DYNAMIC_NATIVE, tracerName );
if ( gridCellResults->ensureKnownResultLoaded( tracerResAddr ) )
{
tracerResAddrs.push_back( tracerResAddr );
}
progress.incrementProgress();
}
std::vector<std::vector<double>> summedTracersAtAllTimesteps;
// TODO: Option for Oil and Gas instead of water
RigEclipseResultAddress flrWatIAddr( RiaDefines::DYNAMIC_NATIVE, "FLRWATI+" );
RigEclipseResultAddress flrWatJAddr( RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+" );
RigEclipseResultAddress flrWatKAddr( RiaDefines::DYNAMIC_NATIVE, "FLRWATK+" );
bool hasFlowrateI = gridCellResults->ensureKnownResultLoaded( flrWatIAddr );
progress.incrementProgress();
bool hasFlowrateJ = gridCellResults->ensureKnownResultLoaded( flrWatJAddr );
progress.incrementProgress();
bool hasFlowrateK = gridCellResults->ensureKnownResultLoaded( flrWatKAddr );
progress.incrementProgress();
std::vector<const std::vector<double>*> flowrateIatAllTimeSteps;
std::vector<const std::vector<double>*> flowrateJatAllTimeSteps;
std::vector<const std::vector<double>*> flowrateKatAllTimeSteps;
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
const std::vector<RigConnection> connections = nncData->connections();
progress.incrementProgress();
// TODO: oil or gas flowrate
std::vector<const std::vector<double>*> flowrateNNCatAllTimeSteps;
QString nncConnectionProperty = mainGrid->nncData()->propertyNameFluxWat();
progress.incrementProgress();
std::vector<double> daysSinceSimulationStart =
caseToApply->eclipseCaseData()->results( RiaDefines::MATRIX_MODEL )->daysSinceSimulationStart();
progress.incrementProgress();
for ( size_t timeStep = 0; timeStep < daysSinceSimulationStart.size(); timeStep++ )
{
const std::vector<double>* flowrateI = nullptr;
if ( hasFlowrateI )
{
flowrateI = &(
eclipseCaseData->results( RiaDefines::MATRIX_MODEL )->cellScalarResults( flrWatIAddr, timeStep ) );
}
flowrateIatAllTimeSteps.push_back( flowrateI );
const std::vector<double>* flowrateJ = nullptr;
if ( hasFlowrateJ )
{
flowrateJ = &(
eclipseCaseData->results( RiaDefines::MATRIX_MODEL )->cellScalarResults( flrWatJAddr, timeStep ) );
}
flowrateJatAllTimeSteps.push_back( flowrateJ );
const std::vector<double>* flowrateK = nullptr;
if ( hasFlowrateK )
{
flowrateK = &(
eclipseCaseData->results( RiaDefines::MATRIX_MODEL )->cellScalarResults( flrWatKAddr, timeStep ) );
}
flowrateKatAllTimeSteps.push_back( flowrateK );
size_t nativeTimeStepIndex = caseToApply->uiToNativeTimeStepIndex( timeStep );
const std::vector<double>* connectionFlowrate =
nncData->dynamicConnectionScalarResultByName( nncConnectionProperty, nativeTimeStepIndex );
flowrateNNCatAllTimeSteps.push_back( connectionFlowrate );
// sum all tracers at current timestep
std::vector<double> summedTracerValues( resultCellCount );
for ( const RigEclipseResultAddress& tracerResAddr : tracerResAddrs )
{
const std::vector<double>* tracerResult = &(
eclipseCaseData->results( RiaDefines::MATRIX_MODEL )->cellScalarResults( tracerResAddr, timeStep ) );
for ( size_t i = 0; i < summedTracerValues.size(); i++ )
{
summedTracerValues[i] += tracerResult->at( i );
}
}
summedTracersAtAllTimesteps.push_back( summedTracerValues );
progress.incrementProgress();
}
progress.setNextProgressIncrement( 2 * timeStepCount );
progress.setProgressDescription( "Calculating" );
calculate( mainGrid,
caseToApply,
daysSinceSimulationStart,
porvResults,
swcrResults,
flowrateIatAllTimeSteps,
flowrateJatAllTimeSteps,
flowrateKatAllTimeSteps,
connections,
flowrateNNCatAllTimeSteps,
summedTracersAtAllTimesteps );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>>& RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumes()
{
return m_cumWinflowPVAllTimeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::calculate( RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<double> daysSinceSimulationStart,
const std::vector<double>* porvResultsActiveCellsOnly,
const std::vector<double>* swcrResults,
std::vector<const std::vector<double>*> flowrateIatAllTimeSteps,
std::vector<const std::vector<double>*> flowrateJatAllTimeSteps,
std::vector<const std::vector<double>*> flowrateKatAllTimeSteps,
const std::vector<RigConnection>& connections,
std::vector<const std::vector<double>*> flowrateNNCatAllTimeSteps,
std::vector<std::vector<double>> summedTracersAtAllTimesteps )
{
// size_t totalNumberOfCells = mainGrid->globalCellArray().size();
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::MATRIX_MODEL );
size_t resultCellCount = actCellInfo->reservoirCellResultCount();
caf::ProgressInfo progress( 2 * daysSinceSimulationStart.size(), "" );
std::vector<std::vector<double>> cellQwInAtAllTimeSteps;
std::vector<double> cellQwInTimeStep0( resultCellCount );
cellQwInAtAllTimeSteps.push_back( cellQwInTimeStep0 );
for ( size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++ )
{
std::vector<double> totoalFlowrateIntoCell(
resultCellCount ); // brukt result celle index / active antall i stedet
if ( flowrateIatAllTimeSteps[timeStep - 1] != nullptr && flowrateJatAllTimeSteps[timeStep - 1] != nullptr &&
flowrateKatAllTimeSteps[timeStep - 1] != nullptr )
{
const std::vector<double>* flowrateI = flowrateIatAllTimeSteps[timeStep - 1];
const std::vector<double>* flowrateJ = flowrateJatAllTimeSteps[timeStep - 1];
const std::vector<double>* flowrateK = flowrateKatAllTimeSteps[timeStep - 1];
if ( flowrateI->size() > 0 && flowrateJ->size() > 0 && flowrateK->size() > 0 )
{
distributeNeighbourCellFlow( mainGrid,
caseToApply,
summedTracersAtAllTimesteps[timeStep - 1],
flowrateI,
flowrateJ,
flowrateK,
totoalFlowrateIntoCell );
}
}
const std::vector<double>* flowrateNNC = flowrateNNCatAllTimeSteps[timeStep - 1];
if ( flowrateNNC && flowrateNNC->size() > 0 )
{
distributeNNCflow( connections,
caseToApply,
summedTracersAtAllTimesteps[timeStep - 1],
flowrateNNC,
totoalFlowrateIntoCell );
}
std::vector<double> CellQwIn( resultCellCount );
double daysSinceSimStartNow = daysSinceSimulationStart[timeStep];
double daysSinceSimStartLastTimeStep = daysSinceSimulationStart[timeStep - 1];
double deltaT = daysSinceSimStartNow - daysSinceSimStartLastTimeStep;
for ( size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++ )
{
CellQwIn[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep - 1][cellResultIndex] +
( totoalFlowrateIntoCell[cellResultIndex] ) * deltaT;
}
cellQwInAtAllTimeSteps.push_back( CellQwIn );
progress.incrementProgress();
}
// Calculate number-of-cell-PV flooded
std::vector<double> cumWinflowPVTimeStep0( resultCellCount );
m_cumWinflowPVAllTimeSteps.clear();
m_cumWinflowPVAllTimeSteps.push_back( cumWinflowPVTimeStep0 );
for ( size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++ )
{
std::vector<double> cumWinflowPV( resultCellCount );
for ( size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++ )
{
double scaledPoreVolume = porvResultsActiveCellsOnly->at( cellResultIndex );
if ( swcrResults != nullptr && swcrResults->size() == resultCellCount )
{
scaledPoreVolume = scaledPoreVolume * ( 1 - swcrResults->at( cellResultIndex ) );
}
cumWinflowPV[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep][cellResultIndex] / scaledPoreVolume;
}
m_cumWinflowPVAllTimeSteps.push_back( cumWinflowPV );
progress.incrementProgress();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNNCflow( const std::vector<RigConnection>& connections,
RimEclipseCase* caseToApply,
const std::vector<double>& summedTracerValues,
const std::vector<double>* flowrateNNC,
std::vector<double>& flowrateIntoCell )
{
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::MATRIX_MODEL );
for ( size_t connectionIndex = 0; connectionIndex < connections.size(); connectionIndex++ )
{
RigConnection connection = connections[connectionIndex];
double connectionValue = flowrateNNC->at( connectionIndex );
size_t cell1Index = connection.m_c1GlobIdx;
size_t cell1ResultIndex = actCellInfo->cellResultIndex( cell1Index );
size_t cell2Index = connection.m_c2GlobIdx;
size_t cell2ResultIndex = actCellInfo->cellResultIndex( cell2Index );
if ( connectionValue > 0 )
{
// Flow out of cell with cell1index, into cell cell2index
flowrateIntoCell[cell2ResultIndex] += connectionValue * summedTracerValues[cell1ResultIndex];
}
else if ( connectionValue < 0 )
{
// flow out of cell with cell2index, into cell cell1index
flowrateIntoCell[cell1ResultIndex] += -1.0 * connectionValue * summedTracerValues[cell2ResultIndex];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow( RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
const std::vector<double>& summedTracerValues,
const std::vector<double>* flrWatResultI,
const std::vector<double>* flrWatResultJ,
const std::vector<double>* flrWatResultK,
std::vector<double>& totalFlowrateIntoCell )
{
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::MATRIX_MODEL );
for ( size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++ )
{
if ( !actCellInfo->isActive( globalCellIndex ) ) continue;
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
RigGridBase* hostGrid = cell.hostGrid();
size_t gridLocalCellIndex = cell.gridLocalCellIndex();
size_t cellResultIndex = actCellInfo->cellResultIndex( globalCellIndex );
size_t i, j, k;
hostGrid->ijkFromCellIndex( gridLocalCellIndex, &i, &j, &k );
if ( i < ( hostGrid->cellCountI() - 1 ) )
{
size_t gridLocalCellIndexPosINeighbour = hostGrid->cellIndexFromIJK( i + 1, j, k );
size_t reservoirCellIndexPosINeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosINeighbour );
size_t cellResultIndexPosINeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosINeighbour );
if ( !actCellInfo->isActive( reservoirCellIndexPosINeighbour ) ) continue;
if ( hostGrid->cell( gridLocalCellIndexPosINeighbour ).subGrid() != nullptr )
{
// subgrid exists in cell, will be handled though NNCs
continue;
}
if ( flrWatResultI->at( cellResultIndex ) > 0 )
{
// Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosINeighbour] += flrWatResultI->at( cellResultIndex ) *
summedTracerValues[cellResultIndex];
}
else if ( flrWatResultI->at( cellResultIndex ) < 0 )
{
// Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += ( -1.0 ) * flrWatResultI->at( cellResultIndex ) *
summedTracerValues[cellResultIndexPosINeighbour];
}
}
if ( j < ( hostGrid->cellCountJ() - 1 ) )
{
size_t gridLocalCellIndexPosJNeighbour = hostGrid->cellIndexFromIJK( i, j + 1, k );
size_t reservoirCellIndexPosJNeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosJNeighbour );
size_t cellResultIndexPosJNeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosJNeighbour );
if ( !actCellInfo->isActive( reservoirCellIndexPosJNeighbour ) ) continue;
if ( hostGrid->cell( gridLocalCellIndexPosJNeighbour ).subGrid() != nullptr )
{
// subgrid exists in cell, will be handled though NNCs
continue;
}
if ( flrWatResultJ->at( cellResultIndex ) > 0 )
{
// Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosJNeighbour] += flrWatResultJ->at( cellResultIndex ) *
summedTracerValues[cellResultIndex];
}
else if ( flrWatResultJ->at( cellResultIndex ) < 0 )
{
// Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += ( -1.0 ) * flrWatResultJ->at( cellResultIndex ) *
summedTracerValues[cellResultIndexPosJNeighbour];
}
}
if ( k < ( hostGrid->cellCountK() - 1 ) )
{
size_t gridLocalCellIndexPosKNeighbour = hostGrid->cellIndexFromIJK( i, j, k + 1 );
size_t reservoirCellIndexPosKNeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosKNeighbour );
size_t cellResultIndexPosKNeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosKNeighbour );
if ( !actCellInfo->isActive( reservoirCellIndexPosKNeighbour ) ) continue;
if ( hostGrid->cell( gridLocalCellIndexPosKNeighbour ).subGrid() != nullptr )
{
// subgrid exists in cell, will be handled though NNCs
continue;
}
if ( flrWatResultK->at( cellResultIndex ) > 0 )
{
// Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosKNeighbour] += flrWatResultK->at( cellResultIndex ) *
summedTracerValues[cellResultIndex];
}
else if ( flrWatResultK->at( cellResultIndex ) < 0 )
{
// Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += ( -1.0 ) * flrWatResultK->at( cellResultIndex ) *
summedTracerValues[cellResultIndexPosKNeighbour];
}
}
}
}