ResInsight/ApplicationCode/GeoMech/GeoMechDataModel/RigFemPartResultsCollection.h

196 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RigFemResultAddress.h"
#include "cafTensor3.h"
#include "cvfCollection.h"
#include "cvfObject.h"
#include <QString>
#include <map>
#include <vector>
class RifGeoMechReaderInterface;
class RifElementPropertyReader;
class RigFemScalarResultFrames;
class RigFemPartResultsCollection;
class RigFemPartResults;
class RigStatisticsDataCache;
class RigFemPartCollection;
class RigFormationNames;
namespace caf
{
class ProgressInfo;
}
class RigFemPartResultsCollection: public cvf::Object
{
public:
static const std::string FIELD_NAME_COMPACTION;
RigFemPartResultsCollection(RifGeoMechReaderInterface* readerInterface, RifElementPropertyReader* elementPropertyReader, const RigFemPartCollection * femPartCollection);
~RigFemPartResultsCollection();
void setActiveFormationNames(RigFormationNames* activeFormationNames);
RigFormationNames* activeFormationNames();
void addElementPropertyFiles(const std::vector<QString>& filenames);
std::vector<RigFemResultAddress> removeElementPropertyFiles(const std::vector<QString>& filenames);
void setCalculationParameters(double cohesion, double frictionAngleRad);
double parameterCohesion() const { return m_cohesion;}
double parameterFrictionAngleRad() const { return m_frictionAngleRad; }
std::map<std::string, std::vector<std::string> > scalarFieldAndComponentNames(RigFemResultPosEnum resPos);
std::vector<std::string> stepNames() const;
bool assertResultsLoaded(const RigFemResultAddress& resVarAddr);
void deleteResult(const RigFemResultAddress& resVarAddr);
const std::vector<float>& resultValues(const RigFemResultAddress& resVarAddr, int partIndex, int frameIndex);
std::vector<caf::Ten3f> tensors(const RigFemResultAddress& resVarAddr, int partIndex, int frameIndex);
int partCount() const;
int frameCount();
static float dsm(float p1, float p3, float tanFricAng, float cohPrTanFricAngle);
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, int frameIndex, double* localMin, double* localMax);
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, double* globalMin, double* globalMax);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero);
void meanScalarValue(const RigFemResultAddress& resVarAddr, double* meanValue);
void meanScalarValue(const RigFemResultAddress& resVarAddr, int frameIndex, double* meanValue);
void p10p90ScalarValues(const RigFemResultAddress& resVarAddr, double* p10, double* p90);
void p10p90ScalarValues(const RigFemResultAddress& resVarAddr, int frameIndex, double* p10, double* p90);
void sumScalarValue(const RigFemResultAddress& resVarAddr, double* sum);
void sumScalarValue(const RigFemResultAddress& resVarAddr, int frameIndex, double* sum);
const std::vector<size_t>& scalarValuesHistogram(const RigFemResultAddress& resVarAddr);
const std::vector<size_t>& scalarValuesHistogram(const RigFemResultAddress& resVarAddr, int frameIndex);
void minMaxScalarValuesOverAllTensorComponents(const RigFemResultAddress& resVarAddr, int frameIndex, double* localMin, double* localMax);
void minMaxScalarValuesOverAllTensorComponents(const RigFemResultAddress& resVarAddr, double* globalMin, double* globalMax);
void posNegClosestToZeroOverAllTensorComponents(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero);
void posNegClosestToZeroOverAllTensorComponents(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero);
private:
RigFemScalarResultFrames* findOrLoadScalarResult(int partIndex,
const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateDerivedResult(int partIndex, const RigFemResultAddress& resVarAddr);
void calculateGammaFromFrames(int partIndex,
const RigFemScalarResultFrames * totalStressComponentDataFrames,
const RigFemScalarResultFrames * srcPORDataFrames,
RigFemScalarResultFrames * dstDataFrames,
caf::ProgressInfo* frameCountProgress);
RigFemScalarResultFrames* calculateBarConvertedResult(int partIndex, const RigFemResultAddress &convertedResultAddr, const std::string& fieldNameToConvert);
RigFemScalarResultFrames* calculateEnIpPorBarResult(int partIndex, const RigFemResultAddress &convertedResultAddr);
RigFemScalarResultFrames* calculateTimeLapseResult(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateMeanStressSEM(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateSFI(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateDSM(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateFOS(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateMeanStressSTM(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateDeviatoricStress(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateVolumetricStrain(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateDeviatoricStrain(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateSurfaceAlignedStress(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculateSurfaceAngles(int partIndex, const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* calculatePrincipalStressValues(int partIndex, const RigFemResultAddress &resVarAddr);
RigFemScalarResultFrames* calculatePrincipalStrainValues(int partIndex, const RigFemResultAddress &resVarAddr);
RigFemScalarResultFrames* calculateCompactionValues(int partIndex, const RigFemResultAddress &resVarAddr);
static std::vector<RigFemResultAddress> tensorPrincipalComponentAdresses(const RigFemResultAddress& resVarAddr);
private:
cvf::Collection<RigFemPartResults> m_femPartResults;
cvf::ref<RifGeoMechReaderInterface> m_readerInterface;
cvf::ref<RifElementPropertyReader> m_elementPropertyReader;
cvf::cref<RigFemPartCollection> m_femParts;
cvf::ref<RigFormationNames> m_activeFormationNamesData;
double m_cohesion;
double m_frictionAngleRad;
RigStatisticsDataCache* statistics(const RigFemResultAddress& resVarAddr);
std::vector< RigFemResultAddress> getResAddrToComponentsToRead(const RigFemResultAddress& resVarAddr);
std::map<RigFemResultAddress, cvf::ref<RigStatisticsDataCache> > m_resultStatistics;
};
#include <array>
#include "cvfVector3.h"
#include <cmath>
// Y - North, X - East, Z - up but depth is negative Z
// azi is measured from the Northing (Y) Axis in Clockwise direction looking down
// inc is measured from the negative Z (depth) axis
class OffshoreSphericalCoords
{
public:
explicit OffshoreSphericalCoords(const cvf::Vec3f& vec)
{
// Azimuth:
if (vec[0] == 0.0f && vec[1] == 0.0 ) incAziR[1] = 0.0f;
else incAziR[1] = atan2(vec[0], vec[1]); // atan2(Y, X)
// R
incAziR[2] = vec.length();
// Inclination from vertical down
if (incAziR[2] == 0) incAziR[0] = 0.0f;
else incAziR[0] = acos(-vec[2]/incAziR[2]);
}
float inc() const { return incAziR[0];}
float azi() const { return incAziR[1];}
float r() const { return incAziR[2];}
private:
std::array<float, 3> incAziR;
};
class RigFemPart;
class RigFemClosestResultIndexCalculator
{
public:
RigFemClosestResultIndexCalculator(RigFemPart* femPart,
RigFemResultPosEnum resultPosition,
int elementIndex,
int m_face,
const cvf::Vec3d& m_intersectionPoint);
int resultIndexToClosestResult() { return m_resultIndexToClosestResult; }
int closestNodeId() { return m_closestNodeId; }
int closestElementNodeResIdx () { return m_closestElementNodeResIdx; }
private:
int m_resultIndexToClosestResult;
int m_closestNodeId;
int m_closestElementNodeResIdx;
};