ResInsight/ApplicationLibCode/GeoMech/GeoMechDataModel/RigFemPartResultCalculatorCompaction.cpp
2021-01-11 15:27:45 +01:00

251 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultCalculatorCompaction.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartGrid.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemScalarResultFrames.h"
#include "RigHexIntersectionTools.h"
#include "cafProgressInfo.h"
#include "cvfBoundingBox.h"
#include <QString>
//--------------------------------------------------------------------------------------------------
/// Internal definitions
//--------------------------------------------------------------------------------------------------
class RefElement
{
public:
size_t elementIdx;
float intersectionPointToCurrentNodeDistance;
cvf::Vec3f intersectionPoint;
std::vector<size_t> elementFaceNodeIdxs;
};
static std::vector<cvf::Vec3d> coordsFromNodeIndices( const RigFemPart& part, const std::vector<size_t>& nodeIdxs );
static std::vector<size_t> nodesForElement( const RigFemPart& part, size_t elementIdx );
static float horizontalDistance( const cvf::Vec3f& p1, const cvf::Vec3f& p2 );
static void findReferenceElementForNode( const RigFemPart& part, size_t nodeIdx, size_t kRefLayer, RefElement* refElement );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorCompaction::RigFemPartResultCalculatorCompaction( RigFemPartResultsCollection& collection )
: RigFemPartResultCalculator( collection )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorCompaction::~RigFemPartResultCalculatorCompaction()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorCompaction::isMatching( const RigFemResultAddress& resVarAddr ) const
{
return ( resVarAddr.fieldName == RigFemPartResultsCollection::FIELD_NAME_COMPACTION );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorCompaction::calculate( int partIndex,
const RigFemResultAddress& resVarAddr )
{
CVF_ASSERT( resVarAddr.fieldName == RigFemPartResultsCollection::FIELD_NAME_COMPACTION );
caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() + 1, "" );
frameCountProgress.setProgressDescription( "Calculating " + QString::fromStdString( resVarAddr.fieldName ) );
RigFemScalarResultFrames* u3Frames =
m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, "U", "U3" ) );
frameCountProgress.incrementProgress();
RigFemScalarResultFrames* compactionFrames = m_resultCollection->createScalarResult( partIndex, resVarAddr );
const RigFemPart* part = m_resultCollection->parts()->part( partIndex );
part->ensureIntersectionSearchTreeIsBuilt();
for ( int t = 0; t < u3Frames->frameCount(); t++ )
{
std::vector<float>& compactionFrame = compactionFrames->frameData( t );
size_t nodeCount = part->nodes().nodeIds.size();
frameCountProgress.incrementProgress();
compactionFrame.resize( nodeCount );
{
// Make sure the AABB-tree is created before using OpenMP
cvf::BoundingBox bb;
std::vector<size_t> refElementCandidates;
part->findIntersectingCells( bb, &refElementCandidates );
// Also make sure the struct grid is created, as this is required before using OpenMP
part->getOrCreateStructGrid();
}
#pragma omp parallel for
for ( long n = 0; n < static_cast<long>( nodeCount ); n++ )
{
RefElement refElement;
findReferenceElementForNode( *part, n, resVarAddr.refKLayerIndex, &refElement );
if ( refElement.elementIdx != cvf::UNDEFINED_SIZE_T )
{
float shortestDist = std::numeric_limits<float>::infinity();
size_t closestRefNodeIdx = cvf::UNDEFINED_SIZE_T;
for ( size_t nodeIdx : refElement.elementFaceNodeIdxs )
{
float dist = horizontalDistance( refElement.intersectionPoint, part->nodes().coordinates[nodeIdx] );
if ( dist < shortestDist )
{
shortestDist = dist;
closestRefNodeIdx = nodeIdx;
}
}
cvf::Vec3f currentNodeCoord = part->nodes().coordinates[n];
if ( currentNodeCoord.z() >= refElement.intersectionPoint.z() )
compactionFrame[n] = -( u3Frames->frameData( t )[n] - u3Frames->frameData( t )[closestRefNodeIdx] );
else
compactionFrame[n] = -( u3Frames->frameData( t )[closestRefNodeIdx] - u3Frames->frameData( t )[n] );
}
else
{
compactionFrame[n] = HUGE_VAL;
}
}
}
RigFemScalarResultFrames* requestedPrincipal = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr );
return requestedPrincipal;
}
//--------------------------------------------------------------------------------------------------
/// Internal functions
//--------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void findReferenceElementForNode( const RigFemPart& part, size_t nodeIdx, size_t kRefLayer, RefElement* refElement )
{
static const double zMin = -1e6, zMax = 1e6;
cvf::BoundingBox bb;
cvf::Vec3f currentNodeCoord = part.nodes().coordinates[nodeIdx];
cvf::Vec3f p1 = cvf::Vec3f( currentNodeCoord.x(), currentNodeCoord.y(), zMin );
cvf::Vec3f p2 = cvf::Vec3f( currentNodeCoord.x(), currentNodeCoord.y(), zMax );
bb.add( p1 );
bb.add( p2 );
std::vector<size_t> refElementCandidates;
part.findIntersectingCells( bb, &refElementCandidates );
const RigFemPartGrid* grid = part.getOrCreateStructGrid();
refElement->elementIdx = cvf::UNDEFINED_SIZE_T;
refElement->intersectionPointToCurrentNodeDistance = std::numeric_limits<float>::infinity();
size_t i, j, k;
for ( const size_t elemIdx : refElementCandidates )
{
bool validIndex = grid->ijkFromCellIndex( elemIdx, &i, &j, &k );
if ( validIndex && k == kRefLayer )
{
const std::vector<size_t> nodeIndices = nodesForElement( part, elemIdx );
CVF_ASSERT( nodeIndices.size() == 8 );
std::vector<HexIntersectionInfo> intersections;
RigHexIntersectionTools::lineHexCellIntersection( cvf::Vec3d( p1 ),
cvf::Vec3d( p2 ),
coordsFromNodeIndices( part, nodeIndices ).data(),
elemIdx,
&intersections );
for ( const auto& intersection : intersections )
{
cvf::Vec3f intersectionPoint = cvf::Vec3f( intersection.m_intersectionPoint );
float nodeToIntersectionDistance = currentNodeCoord.pointDistance( intersectionPoint );
if ( nodeToIntersectionDistance < refElement->intersectionPointToCurrentNodeDistance )
{
cvf::ubyte faceNodes[4];
grid->cellFaceVertexIndices( intersection.m_face, faceNodes );
std::vector<size_t> topFaceCoords( { nodeIndices[faceNodes[0]],
nodeIndices[faceNodes[1]],
nodeIndices[faceNodes[2]],
nodeIndices[faceNodes[3]] } );
refElement->elementIdx = elemIdx;
refElement->intersectionPointToCurrentNodeDistance = nodeToIntersectionDistance;
refElement->intersectionPoint = intersectionPoint;
refElement->elementFaceNodeIdxs = topFaceCoords;
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> coordsFromNodeIndices( const RigFemPart& part, const std::vector<size_t>& nodeIdxs )
{
std::vector<cvf::Vec3d> out;
for ( const auto& nodeIdx : nodeIdxs )
out.push_back( cvf::Vec3d( part.nodes().coordinates[nodeIdx] ) );
return out;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> nodesForElement( const RigFemPart& part, size_t elementIdx )
{
std::vector<size_t> nodeIdxs;
const int* nodeConn = part.connectivities( elementIdx );
for ( int n = 0; n < 8; n++ )
nodeIdxs.push_back( nodeConn[n] );
return nodeIdxs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
float horizontalDistance( const cvf::Vec3f& p1, const cvf::Vec3f& p2 )
{
cvf::Vec3f p1_ = p1;
cvf::Vec3f p2_ = p2;
p1_.z() = p2_.z() = 0;
return p1_.pointDistance( p2_ );
}