ResInsight/ApplicationCode/ReservoirDataModel/RigSimulationWellCenterLineCalculator.cpp
Magne Sjaastad 40a4222db2 Remove obsolete assert
Discussed with @jacobstoren : Multiple branches are handled by the logic, and the assert is probably obsolete. Consider to set isMultiSegmentWell = true when multiple branches are detected.
2018-01-02 08:20:03 +01:00

1102 lines
49 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSimulationWellCenterLineCalculator.h"
#include "RigCell.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimSimWellInView.h"
#include "RimSimWellInViewCollection.h"
#include "cvfBoundingBoxTree.h"
#include "cvfGeometryTools.h"
#include "cvfRay.h"
#include <deque>
#include <list>
//--------------------------------------------------------------------------------------------------
/// Based on the points and cells, calculate a pipe centerline
/// The returned CellIds is one less than the number of centerline points,
/// and are describing the lines between the points, starting with the first line
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeStaticCenterline(RimSimWellInView* rimWell,
std::vector< std::vector <cvf::Vec3d> >& pipeBranchesCLCoords,
std::vector< std::vector <RigWellResultPoint> >& pipeBranchesCellIds)
{
calculateWellPipeDynamicCenterline(rimWell, -1, pipeBranchesCLCoords, pipeBranchesCellIds);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeDynamicCenterline(const RimSimWellInView* rimWell,
int timeStepIndex,
std::vector< std::vector <cvf::Vec3d> >& pipeBranchesCLCoords,
std::vector< std::vector <RigWellResultPoint> >& pipeBranchesCellIds)
{
CVF_ASSERT(rimWell);
const RigSimWellData* simWellData = rimWell->simWellData();
RimEclipseView* eclipseView;
rimWell->firstAncestorOrThisOfType(eclipseView);
CVF_ASSERT(eclipseView);
RigEclipseCaseData* eclipseCaseData = eclipseView->eclipseCase()->eclipseCaseData();
bool isAutoDetectBranches = eclipseView->wellCollection()->isAutoDetectingBranches();
bool useAllCellCenters = rimWell->isUsingCellCenterForPipe();
calculateWellPipeCenterlineFromWellFrame(eclipseCaseData,
simWellData,
timeStepIndex,
isAutoDetectBranches,
useAllCellCenters,
pipeBranchesCLCoords,
pipeBranchesCellIds);
}
//--------------------------------------------------------------------------------------------------
/// Based on the points and cells, calculate a pipe centerline
/// The returned CellIds is one less than the number of centerline points,
/// and are describing the lines between the points, starting with the first line
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeCenterlineFromWellFrame(const RigEclipseCaseData* eclipseCaseData,
const RigSimWellData* wellResults,
int timeStepIndex,
bool isAutoDetectBranches,
bool useAllCellCenters,
std::vector<std::vector<cvf::Vec3d>> &pipeBranchesCLCoords,
std::vector<std::vector<RigWellResultPoint>> &pipeBranchesCellIds)
{
// Initialize the return arrays
pipeBranchesCLCoords.clear();
pipeBranchesCellIds.clear();
if ( !wellResults) return;
if ( timeStepIndex >= 0 && !wellResults->hasAnyValidCells(timeStepIndex) ) return;
const RigWellResultFrame* wellFramePtr = nullptr;
if (timeStepIndex < 0)
{
wellFramePtr = &wellResults->staticWellCells();
}
else
{
wellFramePtr = &(wellResults->wellResultFrame(timeStepIndex));
}
bool isMultiSegmentWell = wellResults->isMultiSegmentWell();
#if 0 // Fancy branch splitting, but with artifacts. Needs a bit more work to be better overall than the one we have.
RigWellResultFrame splittedWellFrame;
if (!isMultiSegmentWell && isAutoDetectBranches)
{
splittedWellFrame = splitIntoBranches(*wellFramePtr, eclipseCaseData);
wellFramePtr = &splittedWellFrame;
isMultiSegmentWell = true;
}
#endif
const RigWellResultFrame& wellFrame = *wellFramePtr;
const std::vector<RigWellResultBranch>& resBranches = wellFrame.m_wellResultBranches;
// Well head
// Match this position with well head position in RivWellHeadPartMgr::buildWellHeadParts()
const RigCell& whCell = eclipseCaseData->cellFromWellResultCell(wellFrame.wellHeadOrStartCell());
cvf::Vec3d whStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K);
RigWellResultPoint wellHead = wellFrame.wellHeadOrStartCell();
const RigWellResultPoint* whResCell = &wellHead;
// Add extra coordinate between cell face and cell center
// to make sure the well pipe terminated in a segment parallel to z-axis
cvf::Vec3d whIntermediate = whStartPos;
whIntermediate.z() = (whStartPos.z() + whCell.center().z()) / 2.0;
const RigWellResultPoint* prevWellResPoint = NULL;
// CVF_ASSERT(isMultiSegmentWell || resBranches.size() <= 1); // TODO : Consider to set isMultiSegmentWell = true;
// The centerline is calculated by adding a point when the pipe enters a cell,
// and one when the line leaves the cell.
// For the sake of the loop:
// The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point to.
// The previous cell is the one we leave, and calculate the "out-point" from
for (size_t brIdx = 0; brIdx < resBranches.size(); brIdx++)
{
// Skip empty branches. Do not know why they exist, but they make problems.
const RigWellResultBranch& branch = resBranches[brIdx];
if ( !hasAnyValidDataCells(branch) ) continue;
prevWellResPoint = NULL;
// Find the start the MSW well-branch centerline. Normal wells are started "once" at wellhead in the code above
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
pipeBranchesCellIds.push_back(std::vector <RigWellResultPoint>());
if (brIdx == 0)
{
// The first branch contains segment number 1, and this is the only segment connected to well head
// See Eclipse documentation for the keyword WELSEGS
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
}
// Loop over all the resultPoints in the branch
const std::vector<RigWellResultPoint>& resBranchCells = resBranches[brIdx].m_branchResultPoints;
for (int cIdx = 0; cIdx < static_cast<int>(resBranchCells.size()); cIdx++) // Need int because cIdx can temporarily end on cvf::UNDEFINED_SIZE_T
{
std::vector<cvf::Vec3d>& branchCLCoords = pipeBranchesCLCoords.back();
std::vector<RigWellResultPoint>& branchCellIds = pipeBranchesCellIds.back();
const RigWellResultPoint& currentWellResPoint = resBranchCells[cIdx];
// Ignore invalid cells
if (!currentWellResPoint.isValid())
{
//CVF_ASSERT(false); // Some segments does not get anything yet.
continue;
}
// Add cl contribution for a geometrical resultPoint by adding exit point from previous cell,
// and then the result point position
if (!currentWellResPoint.isCell())
{
// Use the interpolated value of branch head
CVF_ASSERT(currentWellResPoint.isPointValid());
cvf::Vec3d currentPoint = currentWellResPoint.m_bottomPosition;
// If we have a real previous cell, we need to go out of it, before adding the current point
// That is: add a CL-point describing where it leaves the previous cell.
if (prevWellResPoint && prevWellResPoint->isCell())
{
// Create ray between the previous and this position
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
cvf::Vec3d centerPreviousCell = prevCell.center();
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin(centerPreviousCell);
rayToThisCell.setDirection((currentPoint - centerPreviousCell).getNormalized());
cvf::Vec3d outOfPrevCell(centerPreviousCell);
prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
if ((currentPoint - outOfPrevCell).lengthSquared() > 1e-3)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(RigWellResultPoint());
}
}
branchCLCoords.push_back(currentPoint);
branchCellIds.push_back(currentWellResPoint);
prevWellResPoint = &currentWellResPoint;
continue;
}
//
// Handle currentWellResPoint as a real cell result points.
//
const RigCell& cell = eclipseCaseData->cellFromWellResultCell(currentWellResPoint);
// Check if this and the previous cells has shared faces
cvf::StructGridInterface::FaceType sharedFace;
if (prevWellResPoint && prevWellResPoint->isCell() && eclipseCaseData->findSharedSourceFace(sharedFace, currentWellResPoint, *prevWellResPoint))
{
// If they share faces, the shared face center is used as point
// describing the entry of this cell. (And exit of the previous cell)
branchCLCoords.push_back(cell.faceCenter(sharedFace));
branchCellIds.push_back(currentWellResPoint);
}
else
{
// This and the previous cell does not share a face.
// Then we need to calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d centerPreviousCell(cvf::Vec3d::ZERO);
cvf::Vec3d centerThisCell = cell.center();
bool distanceToWellHeadIsLonger = true;
// If we have a previous well result point, use its center as measure point and ray intersection start
// when considering things.
if (prevWellResPoint && prevWellResPoint->isValid())
{
if (prevWellResPoint->isCell())
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
centerPreviousCell = prevCell.center();
}
else
{
centerPreviousCell = prevWellResPoint->m_bottomPosition;
}
distanceToWellHeadIsLonger = (centerThisCell - centerPreviousCell).lengthSquared() <= (centerThisCell - whStartPos).lengthSquared();
}
// First make sure this cell is not starting a new "display" branch for none MSW's
if ( isMultiSegmentWell
|| !isAutoDetectBranches
|| (prevWellResPoint == whResCell)
|| distanceToWellHeadIsLonger)
{
// Not starting a "display" branch for normal wells
// Calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d intoThisCell(centerThisCell); // Use cell center as default for "into" point.
if (prevWellResPoint && prevWellResPoint->isValid())
{
// We have a defined previous point
// Create ray between the previous and this cell
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin(centerPreviousCell);
rayToThisCell.setDirection((centerThisCell - centerPreviousCell).getNormalized());
// Intersect with the current cell to find a better entry point than the cell center
int intersectionCount = cell.firstIntersectionPoint(rayToThisCell, &intoThisCell);
bool isPreviousResPointInsideCurrentCell = (intersectionCount % 2); // Must intersect uneven times to be inside. (1 % 2 = 1)
// If we have a real previous cell, we need to go out of it, before entering this.
// That is: add a CL-point describing where it leaves the previous cell.
if ( prevWellResPoint->isCell())
{
cvf::Vec3d outOfPrevCell(centerPreviousCell);
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
if ((intoThisCell - outOfPrevCell).lengthSquared() > 1e-3)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(RigWellResultPoint());
}
}
else if (isPreviousResPointInsideCurrentCell)
{
// Since the previous point actually is inside this cell,
/// use that as the entry point into this cell
intoThisCell = centerPreviousCell;
}
}
branchCLCoords.push_back(intoThisCell);
branchCellIds.push_back(currentWellResPoint);
}
else
{
// Need to start a "display branch" for a Normal Well.
CVF_ASSERT(!isMultiSegmentWell);
// This cell is further from the previous cell than from the well head,
// thus we interpret it as a new branch.
// First finish the current branch in the previous cell
//branchCLCoords.push_back(branchCLCoords.back() + 1.5*(centerPreviousCell - branchCLCoords.back()) );
finishPipeCenterLine(pipeBranchesCLCoords, centerPreviousCell);
// Create new display branch
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
pipeBranchesCellIds.push_back(std::vector <RigWellResultPoint>());
// Start the new branch by entering the first cell (the wellhead) and intermediate
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
// Include intermediate
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
// Well now we need to step one back to take this cell again, but in the new branch.
cIdx--;
continue;
}
}
prevWellResPoint = &currentWellResPoint;
}
// For the last cell, add the point 0.5 past the center of that cell
// Remember that prevWellResPoint actually is the last one in this branch.
if (prevWellResPoint && prevWellResPoint->isCell())
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
cvf::Vec3d centerLastCell = prevCell.center();
finishPipeCenterLine(pipeBranchesCLCoords, centerLastCell);
}
else if (prevWellResPoint && prevWellResPoint->isPointValid())
{
// Continue the line with the same point, just to keep the last Cell ID
pipeBranchesCLCoords.back().push_back(prevWellResPoint->m_bottomPosition);
}
else
{
// Remove the ID that is superfluous since we will not add an ending point
pipeBranchesCellIds.back().pop_back();
}
}
if (useAllCellCenters) addCellCenterPoints(eclipseCaseData, pipeBranchesCLCoords, pipeBranchesCellIds);
CVF_ASSERT(pipeBranchesCellIds.size() == pipeBranchesCLCoords.size());
for (size_t i = 0 ; i < pipeBranchesCellIds.size() ; ++i)
{
CVF_ASSERT(pipeBranchesCellIds[i].size() == pipeBranchesCLCoords[i].size()-1);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::addCellCenterPoints(const RigEclipseCaseData* eclipseCaseData,
std::vector<std::vector<cvf::Vec3d>> &pipeBranchesCLCoords,
std::vector<std::vector<RigWellResultPoint>> &pipeBranchesCellIds)
{
for ( size_t brIdx = 0; brIdx < pipeBranchesCellIds.size(); brIdx++ )
{
const std::vector<RigWellResultPoint>& branchResPoints = pipeBranchesCellIds[brIdx];
const std::vector<cvf::Vec3d>& branchClPoints = pipeBranchesCLCoords[brIdx];
std::vector<RigWellResultPoint> branchResPointsWithCellCenters;
std::vector<cvf::Vec3d> branchClPointsWithCellCenters;
for ( size_t cIdx = 0; cIdx < branchResPoints.size(); cIdx++ )
{
branchResPointsWithCellCenters.push_back(branchResPoints[cIdx]);
branchClPointsWithCellCenters.push_back(branchClPoints[cIdx]);
if ( branchResPoints[cIdx].isCell() )
{
const RigCell& cell = eclipseCaseData->cellFromWellResultCell(branchResPoints[cIdx]);
cvf::Vec3d center = cell.center();
branchClPointsWithCellCenters.push_back(center);
branchResPointsWithCellCenters.push_back(branchResPoints[cIdx]);
}
}
branchClPointsWithCellCenters.push_back(branchClPoints[branchResPoints.size()]);
pipeBranchesCellIds[brIdx] = branchResPointsWithCellCenters;
pipeBranchesCLCoords[brIdx] = branchClPointsWithCellCenters;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimulationWellCenterLineCalculator::hasAnyResultCells(const std::vector<RigWellResultBranch> &resBranches)
{
bool hasResultCells = false;
if ( resBranches.size() )
{
for ( size_t i = 0 ; i < resBranches.size(); ++i )
{
if ( resBranches[i].m_branchResultPoints.size() != 0 )
{
hasResultCells = true;
break;
}
}
}
return hasResultCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimulationWellCenterLineCalculator::hasAnyValidDataCells(const RigWellResultBranch& branch)
{
bool hasValidData = false;
for ( size_t cIdx = 0; cIdx < branch.m_branchResultPoints.size(); ++cIdx )
{
if ( branch.m_branchResultPoints[cIdx].isValid() )
{
hasValidData = true;
break;
}
}
return hasValidData;
}
//--------------------------------------------------------------------------------------------------
/// All branches are completed using the point 0.5 past the center of
/// last cell.
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::finishPipeCenterLine(std::vector< std::vector<cvf::Vec3d> > &pipeBranchesCLCoords, const cvf::Vec3d& lastCellCenter)
{
CVF_ASSERT(pipeBranchesCLCoords.size());
CVF_ASSERT(pipeBranchesCLCoords.back().size());
cvf::Vec3d entryPointLastCell = pipeBranchesCLCoords.back().back();
pipeBranchesCLCoords.back().push_back(entryPointLastCell + 1.5*(lastCellCenter - entryPointLastCell) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class BranchSplitter
{
public:
BranchSplitter(const RigWellResultFrame& awellResultFrame,
const RigEclipseCaseData* eclipseCaseData)
:m_eclipseCaseData(eclipseCaseData), m_orgWellResultFrame(awellResultFrame)
{
CVF_ASSERT(m_orgWellResultFrame.m_wellResultBranches.size() <= 1);
m_branchedWell = m_orgWellResultFrame;
buildCellSearchTree();
buildCellsToNeighborsMap();
buildUnusedCellsSet();
buildBranchLinesOfContinousNeighbourCells();
class DistToEndPoint
{
public:
DistToEndPoint(double adist, std::list< std::pair<bool, std::deque<size_t> > >::iterator aBranchLineIt, bool aToFrontOfBranchLine2)
: dist(adist), branchLineIt(aBranchLineIt), toFrontOfBranchLine(aToFrontOfBranchLine2)
{}
double dist;
std::list< std::pair<bool, std::deque<size_t> > >::iterator branchLineIt;
bool toFrontOfBranchLine;
bool operator<(const DistToEndPoint& other ) const { return dist < other.dist; }
};
auto cmp = [] (std::list< std::pair<bool, std::deque<size_t> > >::iterator a,
std::list< std::pair<bool, std::deque<size_t> > >::iterator b)
{
return &(*a) < &(*b);
};
std::set< std::list< std::pair<bool, std::deque<size_t> > >::iterator, decltype(cmp) > unusedBranchLineIterators(cmp);
std::map<int, std::multiset<DistToEndPoint> > resBranchIdxToBranchLineEndPointsDists;
/// Creating useful lambda functions
auto buildResBranchToBranchLineEndsDistMap =
[&unusedBranchLineIterators, &resBranchIdxToBranchLineEndPointsDists, this](cvf::Vec3d& fromPoint, int resultBranchIndex)
{
for ( auto it :unusedBranchLineIterators )
{
{
double dist = calculateFrontToPointDistance(it->second, fromPoint);
resBranchIdxToBranchLineEndPointsDists[resultBranchIndex].insert(DistToEndPoint(dist, it, true));
}
{
double dist = calculateEndToPointDistance(it->second, fromPoint);
resBranchIdxToBranchLineEndPointsDists[resultBranchIndex].insert(DistToEndPoint(dist, it, false));
}
}
};
auto removeBranchLineFromDistanceMap =
[&resBranchIdxToBranchLineEndPointsDists](std::list< std::pair<bool, std::deque<size_t> > >::iterator branchLineToMergeIt)
{
for ( auto& brIdx_DistToEndPointSet : resBranchIdxToBranchLineEndPointsDists )
{
std::vector<std::multiset<DistToEndPoint>::iterator> iteratorsToErase;
for ( auto it = brIdx_DistToEndPointSet.second.begin(); it != brIdx_DistToEndPointSet.second.end(); ++it )
{
if ( it->branchLineIt == branchLineToMergeIt )
{
iteratorsToErase.push_back(it);
}
}
for (auto itToErase : iteratorsToErase) brIdx_DistToEndPointSet.second.erase(itToErase);
}
};
// Make the result container ready
m_branchedWell.m_wellResultBranches.clear();
m_branchedWell.m_wellResultBranches.push_back(RigWellResultBranch());
// Build set of unused branch lines
for (auto brLIt = m_branchLines.begin(); brLIt != m_branchLines.end(); ++brLIt)
{
if (brLIt->first) unusedBranchLineIterators.insert(brLIt);
}
// Calculate wellhead to branch line ends distances
{
const RigCell& whCell = m_eclipseCaseData->cellFromWellResultCell(m_orgWellResultFrame.wellHeadOrStartCell());
cvf::Vec3d whStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K);
buildResBranchToBranchLineEndsDistMap(whStartPos, -1);
}
// Add the branchLine closest to wellhead into the result
{
auto closestEndPointIt = resBranchIdxToBranchLineEndPointsDists[-1].begin();
addBranchLineToLastWellResultBranch(closestEndPointIt->branchLineIt, closestEndPointIt->toFrontOfBranchLine);
unusedBranchLineIterators.erase(closestEndPointIt->branchLineIt);
removeBranchLineFromDistanceMap(closestEndPointIt->branchLineIt);
}
// Add the branchLines that starts directly from another branchLine
{
for ( auto brLIt = m_branchLines.begin(); brLIt != m_branchLines.end(); ++brLIt )
{
if ( !brLIt->first )
{
m_branchedWell.m_wellResultBranches.push_back(RigWellResultBranch());
addBranchLineToLastWellResultBranch(brLIt, true);
}
}
}
while ( !unusedBranchLineIterators.empty() )
{
// Calculate distance from end of all currently added result branches to all branch lines
for (size_t resultBranchIndex = 0; resultBranchIndex < m_branchedWell.m_wellResultBranches.size(); ++resultBranchIndex)
{
if (! resBranchIdxToBranchLineEndPointsDists.count((int)resultBranchIndex)
&& m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.size()
&& m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.back().isCell())
{
const RigCell& whCell = eclipseCaseData->cellFromWellResultCell(m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.back());
cvf::Vec3d branchEndPoint = whCell.center();
buildResBranchToBranchLineEndsDistMap(branchEndPoint, (int)resultBranchIndex);
}
}
// Find the result branch to grow, by finding the one with the closest distance to a branchLine
int minDistanceBrIdx = -1;
DistToEndPoint closestEndPoint(HUGE_VAL,m_branchLines.end(), true);
for (auto& brIdx_DistToEndPointSet : resBranchIdxToBranchLineEndPointsDists)
{
if (brIdx_DistToEndPointSet.second.begin()->dist < closestEndPoint.dist)
{
minDistanceBrIdx = brIdx_DistToEndPointSet.first;
closestEndPoint = *( brIdx_DistToEndPointSet.second.begin());
}
}
// Grow the result branch with the branchLine
auto closestEndPointIt = resBranchIdxToBranchLineEndPointsDists[minDistanceBrIdx].begin();
auto branchLineToAddIt = closestEndPointIt->branchLineIt;
addBranchLineToWellResultBranch(minDistanceBrIdx, branchLineToAddIt, closestEndPointIt->toFrontOfBranchLine);
// Remove the branchLine from the control datastructures
unusedBranchLineIterators.erase(branchLineToAddIt);
resBranchIdxToBranchLineEndPointsDists.erase(minDistanceBrIdx);
removeBranchLineFromDistanceMap(branchLineToAddIt);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultFrame splittedWellResultFrame()
{
return m_branchedWell;
}
private:
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void addBranchLineToLastWellResultBranch(std::list< std::pair<bool, std::deque<size_t> > >::iterator branchLineIt, bool startAtFront)
{
addBranchLineToWellResultBranch( static_cast<int>(m_branchedWell.m_wellResultBranches.size()) - 1, branchLineIt, startAtFront);
}
//--------------------------------------------------------------------------------------------------
/// branchIdx == -1 creates a new branch
//--------------------------------------------------------------------------------------------------
void addBranchLineToWellResultBranch(int branchIdx, std::list< std::pair<bool, std::deque<size_t> > >::iterator branchLineIt, bool startAtFront)
{
if (branchIdx < 0)
{
m_branchedWell.m_wellResultBranches.push_back(RigWellResultBranch());
branchIdx = static_cast<int>( m_branchedWell.m_wellResultBranches.size()) - 1;
RigWellResultPoint wellHeadAsPoint;
const RigCell& whCell = m_eclipseCaseData->cellFromWellResultCell(m_orgWellResultFrame.wellHeadOrStartCell());
cvf::Vec3d whStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K);
wellHeadAsPoint.m_bottomPosition = whStartPos;
m_branchedWell.m_wellResultBranches[branchIdx].m_branchResultPoints.push_back(wellHeadAsPoint);
}
RigWellResultBranch& currentBranch = m_branchedWell.m_wellResultBranches[branchIdx];
std::deque<size_t> wellCellIndices = branchLineIt->second;
if (!startAtFront) std::reverse(wellCellIndices.begin(), wellCellIndices.end());
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
#if 1
if ( wellCellIndices.size() )
{
if ( !branchLineIt->first ) // Is real branch, with first cell as cell *before* entry point on main branch
{
RigWellResultPoint branchStartAsResultPoint;
const RigCell& branchStartCell = m_eclipseCaseData->cellFromWellResultCell(orgWellResultPoints[wellCellIndices.front()]);
cvf::Vec3d branchStartPos = branchStartCell.center();
if ( wellCellIndices.size() > 1 )
{
// Use the shared face between the cell before, and the branching cell as start point for the branch, to make the pipe "whole"
cvf::StructGridInterface::FaceType sharedFace = cvf::StructGridInterface::NO_FACE;
m_eclipseCaseData->findSharedSourceFace(sharedFace, orgWellResultPoints[wellCellIndices[0]], orgWellResultPoints[wellCellIndices[1]]);
if ( sharedFace != cvf::StructGridInterface::NO_FACE )
{
branchStartPos = branchStartCell.faceCenter(sharedFace);
}
}
branchStartAsResultPoint.m_bottomPosition = branchStartPos;
m_branchedWell.m_wellResultBranches[branchIdx].m_branchResultPoints.push_back(branchStartAsResultPoint);
}
else
{
currentBranch.m_branchResultPoints.push_back(orgWellResultPoints[wellCellIndices.front()]);
}
for ( size_t i = 1; i < wellCellIndices.size(); ++i )
{
size_t wcIdx = wellCellIndices[i];
currentBranch.m_branchResultPoints.push_back(orgWellResultPoints[wcIdx]);
}
}
#else
for (size_t wcIdx : wellCellIndices)
{
currentBranch.m_branchResultPoints.push_back(orgWellResultPoints[wcIdx]);
}
#endif
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildCellSearchTree()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
m_cellBoundingBoxes.resize(cellCount);
const std::vector<cvf::Vec3d>& nodes = m_eclipseCaseData->mainGrid()->nodes();
for ( size_t cIdx = 0; cIdx < cellCount; ++cIdx )
{
if ( !orgWellResultPoints[cIdx].isCell() ) continue;
const RigCell& wellCell = m_eclipseCaseData->cellFromWellResultCell(orgWellResultPoints[cIdx]);
if ( wellCell.isInvalid() ) continue;
const caf::SizeTArray8& cellIndices = wellCell.cornerIndices();
cvf::BoundingBox& cellBB = m_cellBoundingBoxes[cIdx];
cellBB.add(nodes[cellIndices[0]]);
cellBB.add(nodes[cellIndices[1]]);
cellBB.add(nodes[cellIndices[2]]);
cellBB.add(nodes[cellIndices[3]]);
cellBB.add(nodes[cellIndices[4]]);
cellBB.add(nodes[cellIndices[5]]);
cellBB.add(nodes[cellIndices[6]]);
cellBB.add(nodes[cellIndices[7]]);
}
m_cellSearchTree.buildTreeFromBoundingBoxes(m_cellBoundingBoxes, nullptr);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildCellsToNeighborsMap()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
const std::vector<cvf::Vec3d>& nodes = m_eclipseCaseData->mainGrid()->nodes();
double cellSizeI, cellSizeJ, cellSizeK;
m_eclipseCaseData->mainGrid()->characteristicCellSizes(&cellSizeI, &cellSizeJ, &cellSizeK);
double stdArea = cellSizeK*(cellSizeI+cellSizeJ)*0.5;
for ( size_t cIdx = 0; cIdx < cellCount; ++ cIdx )
{
std::vector<size_t> closeCells;
m_cellSearchTree.findIntersections(m_cellBoundingBoxes[cIdx], &closeCells);
const RigCell& c1 = m_eclipseCaseData->cellFromWellResultCell(orgWellResultPoints[cIdx]);
m_cellsWithNeighbors[cIdx]; // Add an empty set for this cell, in case we have no neighbors
for ( size_t idxToCloseCell : closeCells )
{
if ( idxToCloseCell != cIdx && m_cellsWithNeighbors[cIdx].count(idxToCloseCell) == 0 )
{
const RigCell& c2 = m_eclipseCaseData->cellFromWellResultCell(orgWellResultPoints[idxToCloseCell]);
std::vector<size_t> poygonIndices;
std::vector<cvf::Vec3d> intersections;
auto contactFace = RigNNCData::calculateCellFaceOverlap(c1, c2, *(m_eclipseCaseData->mainGrid()), &poygonIndices, &intersections);
if ( contactFace != cvf::StructGridInterface::NO_FACE )
{
std::vector<cvf::Vec3d> realPolygon;
for ( size_t pIdx = 0; pIdx < poygonIndices.size(); ++pIdx )
{
if ( poygonIndices[pIdx] < nodes.size() )
realPolygon.push_back(nodes[poygonIndices[pIdx]]);
else
realPolygon.push_back(intersections[poygonIndices[pIdx] - nodes.size()]);
}
// Polygon area vector
cvf::Vec3d area = cvf::GeometryTools::polygonAreaNormal3D(realPolygon);
if (area.length() < 1e-3 * stdArea) continue;
m_cellsWithNeighbors[cIdx].insert(idxToCloseCell);
m_cellsWithNeighbors[idxToCloseCell].insert(cIdx);
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildUnusedCellsSet()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
for ( size_t i = 0; i < cellCount; ++i )
{
if ( orgWellResultPoints[i].isCell() ) m_unusedWellCellIndices.insert(i);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildBranchLinesOfContinousNeighbourCells()
{
for ( auto& cellWithNeighborsPair : m_cellsWithNeighbors )
{
auto it = m_unusedWellCellIndices.find(cellWithNeighborsPair.first);
if ( it != m_unusedWellCellIndices.end() )
{
m_unusedWellCellIndices.erase(it);
// Create a new branchline containing the cell itself.
m_branchLines.push_back(std::make_pair(true, std::deque<size_t>()));
auto currentBranchLineIt = std::prev(m_branchLines.end());
auto& branchList = currentBranchLineIt->second;
branchList.push_back(cellWithNeighborsPair.first);
unsigned endToGrow = 0; // 0 end, 1 front, > 1 new branch
size_t neighbour = findBestNeighbor(cellWithNeighborsPair.first, cellWithNeighborsPair.second);
while (neighbour != cvf::UNDEFINED_SIZE_T)
{
m_unusedWellCellIndices.erase(neighbour);
if ( endToGrow == 0 )
{
branchList.push_back(neighbour);
growBranchListEnd(currentBranchLineIt);
endToGrow++;
}
else if ( endToGrow == 1 )
{
branchList.push_front(neighbour);
growBranchListFront(currentBranchLineIt);
endToGrow++;
}
else // if ( endToGrow > 1 )
{
m_branchLines.push_back(std::make_pair(false, std::deque<size_t>{ branchList.front(), cellWithNeighborsPair.first, neighbour } ));
auto newBranchLineIt = std::prev(m_branchLines.end());
growBranchListEnd(newBranchLineIt);
if (newBranchLineIt->second.size() == 3)
{
// No real contribution from the branch.
// Put the cell into main stem
// Todo
}
}
neighbour = findBestNeighbor(cellWithNeighborsPair.first, cellWithNeighborsPair.second);
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t findBestNeighbor(size_t cell, std::set<size_t> neighbors)
{
size_t posKNeighbor = cvf::UNDEFINED_SIZE_T;
size_t firstUnused = cvf::UNDEFINED_SIZE_T;
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
for ( size_t neighbor : neighbors)
{
if ( m_unusedWellCellIndices.count(neighbor) )
{
cvf::StructGridInterface::FaceType sharedFace;
m_eclipseCaseData->findSharedSourceFace(sharedFace, orgWellResultPoints[cell], orgWellResultPoints[neighbor]);
if ( sharedFace == cvf::StructGridInterface::NEG_K ) return neighbor;
if ( sharedFace == cvf::StructGridInterface::POS_K ) posKNeighbor = neighbor;
else if (firstUnused == cvf::UNDEFINED_SIZE_T)
{
firstUnused = neighbor;
}
}
}
if (posKNeighbor != cvf::UNDEFINED_SIZE_T)
{
return posKNeighbor;
}
else
{
return firstUnused;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void growBranchListEnd( std::list< std::pair<bool, std::deque<size_t> > >::iterator branchListIt)
{
std::deque<size_t>& branchList = branchListIt->second;
CVF_ASSERT(branchList.size());
size_t startCell = branchList.back();
size_t prevCell = cvf::UNDEFINED_SIZE_T;
size_t startCellPosInStem = branchList.size()-1;
if (branchList.size() > 1) prevCell = branchList[branchList.size()-2];
const auto& neighbors = m_cellsWithNeighbors[startCell];
size_t nb = findBestNeighbor(startCell, neighbors);
if (nb != cvf::UNDEFINED_SIZE_T)
{
branchList.push_back(nb);
m_unusedWellCellIndices.erase(nb);
growBranchListEnd(branchListIt);
}
startAndGrowSeparateBranchesFromRestOfNeighbors(startCell, prevCell, neighbors, branchList, startCellPosInStem, true);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void startAndGrowSeparateBranchesFromRestOfNeighbors(size_t startCell, size_t prevCell, const std::set<size_t>& neighbors, std::deque<size_t> mainStem, size_t branchPosInMainStem, bool stemEndIsGrowing)
{
size_t nb = findBestNeighbor(startCell, neighbors);
while ( nb != cvf::UNDEFINED_SIZE_T )
{
if ( prevCell == cvf::UNDEFINED_SIZE_T )
{
m_branchLines.push_back(std::make_pair(false, std::deque<size_t>{startCell, nb}));
}
else
{
m_branchLines.push_back(std::make_pair(false, std::deque<size_t>{prevCell, startCell, nb}));
}
m_unusedWellCellIndices.erase(nb);
auto lastBranchIt = std::prev(m_branchLines.end());
size_t separateBranchStartSize = lastBranchIt->second.size();
growBranchListEnd(lastBranchIt);
if (lastBranchIt->second.size() == separateBranchStartSize)
{
// No use in this branch.
// put cell into main stem instead
if (stemEndIsGrowing)
mainStem.insert(mainStem.begin() + branchPosInMainStem, nb);
else
mainStem.insert(mainStem.end() - branchPosInMainStem, nb);
m_branchLines.erase(lastBranchIt);
}
nb = findBestNeighbor(startCell, neighbors);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void growBranchListFront( std::list< std::pair<bool, std::deque<size_t> > >::iterator branchListIt)
{
std::deque<size_t>& branchList = branchListIt->second;
CVF_ASSERT(branchList.size());
size_t startCell = branchList.front();
size_t prevCell = cvf::UNDEFINED_SIZE_T;
size_t startCellPosInStem = branchList.size()-1;
if (branchList.size() > 1) prevCell = branchList[1];
const auto& neighbors = m_cellsWithNeighbors[startCell];
size_t nb = findBestNeighbor(startCell, neighbors);
if (nb != cvf::UNDEFINED_SIZE_T)
{
branchList.push_front(nb);
m_unusedWellCellIndices.erase(nb);
growBranchListFront(branchListIt);
}
startAndGrowSeparateBranchesFromRestOfNeighbors(startCell, prevCell, neighbors, branchList, startCellPosInStem, false);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateFrontToPointDistance(const std::deque<size_t>& second, const cvf::Vec3d& point)
{
// Todo, more fancy virtual curvature based distance using an estimated direction from the branch-end
return calculateWellCellToPointDistance(second.front(), point);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateEndToPointDistance(const std::deque<size_t>& second, const cvf::Vec3d& point)
{
// Todo, more fancy virtual curvature based distance using an estimated direction from the branch-end
return calculateWellCellToPointDistance(second.back(), point);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateWellCellToPointDistance(size_t wellCellIdx, const cvf::Vec3d& point)
{
const std::vector<RigWellResultPoint>& orgWellResultPoints = m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
const RigCell& c = m_eclipseCaseData->cellFromWellResultCell(orgWellResultPoints[wellCellIdx]);
cvf::Vec3d cellCenter = c.center();
return (point-cellCenter).length();
}
private:
// The bool tells if this can be expanded in the front,
// Set to false when the branchLine starts from a branching cell (cell with more than two neighbors)
std::list< std::pair<bool, std::deque<size_t> > > m_branchLines;
std::vector<cvf::BoundingBox> m_cellBoundingBoxes;
cvf::BoundingBoxTree m_cellSearchTree;
std::map<size_t, std::set<size_t> > m_cellsWithNeighbors;
std::set<size_t> m_unusedWellCellIndices;
RigWellResultFrame m_branchedWell;
const RigEclipseCaseData* m_eclipseCaseData;
const RigWellResultFrame& m_orgWellResultFrame;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultFrame RigSimulationWellCenterLineCalculator::splitIntoBranches(const RigWellResultFrame& wellResultFrame,
const RigEclipseCaseData* eclipseCaseData)
{
BranchSplitter splitter(wellResultFrame, eclipseCaseData);
return splitter.splittedWellResultFrame();
}