ResInsight/ApplicationCode/ModelVisualization/RivWellFracturePartMgr.cpp

1176 lines
46 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaApplication.h"
#include "RiaColorTables.h"
#include "RiaFractureDefines.h"
#include "RigCellGeometryTools.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigHexIntersectionTools.h"
#include "RigMainGrid.h"
#include "RigWellPath.h"
#include "RimCase.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureContainment.h"
#include "RimFractureContainmentTools.h"
#include "RimFractureTemplate.h"
#include "RimRegularLegendConfig.h"
#include "RimSimWellInView.h"
#include "RimStimPlanColors.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RivFaultGeometryGenerator.h"
#include "RivObjectSourceInfo.h"
#include "RivPartPriority.h"
#include "RivPipeGeometryGenerator.h"
#include "RivWellFracturePartMgr.h"
#include "cafDisplayCoordTransform.h"
#include "cafEffectGenerator.h"
#include "cvfAssert.h"
#include "cvfDrawableGeo.h"
#include "cvfGeometryTools.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSet.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfRenderStateDepth.h"
#include "cvfScalarMapperContinuousLinear.h"
#include "cvfTransform.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::RivWellFracturePartMgr(RimFracture* fracture)
: m_rimFracture(fracture)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::~RivWellFracturePartMgr() {}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendGeometryPartsToModel(cvf::ModelBasicList* model, const RimEclipseView& eclView)
{
if (!m_rimFracture->isChecked() || !eclView.fractureColors()->isChecked()) return;
if (!m_rimFracture->fractureTemplate()) return;
m_visibleFracturePolygons.clear();
double characteristicCellSize = eclView.ownerCase()->characteristicCellSize();
cvf::Collection<cvf::Part> parts;
RimStimPlanFractureTemplate* stimPlanFracTemplate =
dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
if (stimPlanFracTemplate)
{
if (eclView.fractureColors()->stimPlanResultColorType() == RimStimPlanColors::SINGLE_ELEMENT_COLOR)
{
auto part = createStimPlanElementColorSurfacePart(eclView);
if (part.notNull()) parts.push_back(part.p());
}
else
{
auto part = createStimPlanColorInterpolatedSurfacePart(eclView);
if (part.notNull()) parts.push_back(part.p());
}
if (eclView.fractureColors()->showStimPlanMesh())
{
auto part = createStimPlanMeshPart(eclView);
if (part.notNull()) parts.push_back(part.p());
}
}
else
{
auto part = createEllipseSurfacePart(eclView);
if (part.notNull()) parts.push_back(part.p());
}
double distanceToCenterLine = 1.0;
{
RimWellPathCollection* wellPathColl = nullptr;
m_rimFracture->firstAncestorOrThisOfType(wellPathColl);
if (wellPathColl)
{
distanceToCenterLine = wellPathColl->wellPathRadiusScaleFactor() * characteristicCellSize;
}
RimSimWellInView* simWell = nullptr;
m_rimFracture->firstAncestorOrThisOfType(simWell);
if (simWell)
{
distanceToCenterLine = simWell->pipeRadius();
}
}
// Make sure the distance is slightly smaller than the pipe radius to make the pipe is visible through the fracture
distanceToCenterLine *= 0.1;
if (distanceToCenterLine < 0.03)
{
distanceToCenterLine = 0.03;
}
auto fractureMatrix = m_rimFracture->transformMatrix();
if (m_rimFracture->fractureTemplate() &&
m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
{
cvf::Vec3d partTranslation = distanceToCenterLine * cvf::Vec3d(fractureMatrix.col(2));
for (auto& part : parts)
{
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(model, part.p(), partTranslation);
}
}
else
{
for (auto& part : parts)
{
model->addPart(part.p());
}
}
if (m_rimFracture->fractureTemplate())
{
// Position the containment mask outside the fracture parts
// Always duplicate the containment mask parts
{
auto maskOfFractureAreasOutsideGrid = createMaskOfFractureOutsideGrid(eclView);
if (maskOfFractureAreasOutsideGrid.notNull())
{
double scaleFactor = 0.03;
if (m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
{
scaleFactor = 2 * distanceToCenterLine;
}
cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d(fractureMatrix.col(2));
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(
model, maskOfFractureAreasOutsideGrid.p(), partTranslation);
}
}
if (m_rimFracture->fractureTemplate()->fractureContainment()->isEnabled())
{
// Position the containment mask outside the fracture parts
// Always duplicate the containment mask parts
auto containmentMask = createContainmentMaskPart(eclView);
if (containmentMask.notNull())
{
double scaleFactor = 0.03;
if (m_rimFracture->fractureTemplate() &&
m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
{
scaleFactor = 2 * distanceToCenterLine;
}
cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d(fractureMatrix.col(2));
RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(model, containmentMask.p(), partTranslation);
}
}
}
appendFracturePerforationLengthParts(eclView, model);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const QString RivWellFracturePartMgr::resultInfoText(const RimEclipseView& activeView, cvf::Vec3d domainIntersectionPoint) const
{
QString text;
if (m_rimFracture.isNull()) return text;
auto* ellipseFractureTemplate = dynamic_cast<RimEllipseFractureTemplate*>(m_rimFracture->fractureTemplate());
auto* stimPlanTemplate = dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
if (ellipseFractureTemplate)
{
text.append("Result value: CONDUCTIVITY ");
text.append(QString::number(ellipseFractureTemplate->conductivity()) + "\n");
}
else if (stimPlanTemplate)
{
const RigFractureCell* cell = getFractureCellAtDomainCoord(domainIntersectionPoint);
if (cell)
{
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
double resultValue = stimPlanTemplate->resultValueAtIJ(
resultNameFromColors, resultUnitFromColors, stimPlanTemplate->activeTimeStepIndex(), cell->getI(), cell->getJ());
QString resultValueText = QString("%1").arg(resultValue);
QString iText = QString::number(cell->getI());
QString jText = QString::number(cell->getJ());
RimStimPlanColors* stimPlanColors = activeView.fractureColors();
if (stimPlanColors)
{
// Conductivity
text.append("Result value: ");
QString resultName = stimPlanTemplate->mapUiResultNameToFileResultName(stimPlanColors->uiResultName());
text.append(resultName + " ");
text.append(resultValueText + "\n");
}
// Cell index
text.append("Cell Index: ");
text.append(iText + ", " + jText + "\n");
}
}
return text;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFractureCell* RivWellFracturePartMgr::getFractureCellAtDomainCoord(cvf::Vec3d domainCoord) const
{
if (!m_rimFracture) return nullptr;
cvf::Mat4d toFractureXf = m_rimFracture->transformMatrix().getInverted();
cvf::Vec3d fractureCoord = domainCoord.getTransformedPoint(toFractureXf);
auto* stimPlanTempl = dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
if (!stimPlanTempl) return nullptr;
const RigFractureGrid* grid = stimPlanTempl->fractureGrid();
size_t cellI = cvf::UNDEFINED_SIZE_T;
size_t cellJ = cvf::UNDEFINED_SIZE_T;
const std::vector<RigFractureCell>& cells = grid->fractureCells();
for (size_t i = 0; i < grid->iCellCount(); i++)
{
const RigFractureCell& cell = cells[i * grid->jCellCount()];
std::vector<cvf::Vec3d> polygon = cell.getPolygon();
double xmin = polygon[0].x();
double xmax = polygon[2].x();
if (fractureCoord.x() >= xmin && fractureCoord.x() <= xmax)
{
cellI = cell.getI();
break;
}
}
for (size_t j = 0; j < grid->jCellCount(); j++)
{
const RigFractureCell& cell = cells[j];
std::vector<cvf::Vec3d> polygon = cell.getPolygon();
double ymin = polygon[2].y();
double ymax = polygon[0].y();
if (fractureCoord.y() >= ymin && fractureCoord.y() <= ymax)
{
cellJ = cell.getJ();
break;
}
}
if (cellI != cvf::UNDEFINED_SIZE_T && cellJ != cvf::UNDEFINED_SIZE_T)
{
return &grid->cellFromIndex(grid->getGlobalIndexFromIJ(cellI, cellJ));
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createEllipseSurfacePart(const RimEclipseView& activeView)
{
auto displayCoordTransform = activeView.displayCoordTransform();
if (displayCoordTransform.isNull()) return nullptr;
if (m_rimFracture)
{
std::vector<cvf::uint> triangleIndices;
std::vector<cvf::Vec3f> nodeDisplayCoords;
{
std::vector<cvf::Vec3f> nodeCoords;
m_rimFracture->fractureTemplate()->fractureTriangleGeometry(&nodeCoords, &triangleIndices);
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
nodeDisplayCoords = transformToFractureDisplayCoords(nodeCoords, fractureXf, *displayCoordTransform);
}
if (triangleIndices.empty() || nodeDisplayCoords.empty())
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triangleIndices, nodeDisplayCoords);
CVF_ASSERT(geo.notNull());
cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_ellipse");
surfacePart->setDrawable(geo.p());
surfacePart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));
cvf::Color4f fractureColor = cvf::Color4f(activeView.fractureColors()->defaultColor());
RimRegularLegendConfig* legendConfig = nullptr;
if (activeView.fractureColors() && activeView.fractureColors()->isChecked())
{
legendConfig = activeView.fractureColors()->activeLegend();
}
if (legendConfig && legendConfig->scalarMapper())
{
cvf::Color3ub resultColor = cvf::Color3ub(RiaColorTables::undefinedCellColor());
if (activeView.fractureColors()->uiResultName() == RiaDefines::conductivityResultName())
{
RimEllipseFractureTemplate* ellipseFractureTemplate =
dynamic_cast<RimEllipseFractureTemplate*>(m_rimFracture->fractureTemplate());
if (ellipseFractureTemplate)
{
double conductivity = ellipseFractureTemplate->conductivity();
resultColor = legendConfig->scalarMapper()->mapToColor(conductivity);
}
}
fractureColor.set(cvf::Color3f::fromByteColor(resultColor.r(), resultColor.g(), resultColor.b()));
}
caf::SurfaceEffectGenerator surfaceGen(fractureColor, caf::PO_1);
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
surfacePart->setEffect(eff.p());
return surfacePart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanColorInterpolatedSurfacePart(const RimEclipseView& activeView)
{
CVF_ASSERT(m_rimFracture);
RimStimPlanFractureTemplate* stimPlanFracTemplate =
dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
CVF_ASSERT(stimPlanFracTemplate);
auto displayCoordTransform = activeView.displayCoordTransform();
if (displayCoordTransform.isNull()) return nullptr;
// Note that the filtering and result mapping code below couples closely to the triangulation and vertex layout returned by
// triangleGeometry() If this ever changes, the entire code must be revisited
std::vector<cvf::uint> triangleIndices;
std::vector<cvf::Vec3f> nodeDisplayCoords;
{
std::vector<cvf::Vec3f> nodeCoords;
stimPlanFracTemplate->fractureTriangleGeometry(&nodeCoords, &triangleIndices);
if (triangleIndices.empty() || nodeCoords.empty())
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
nodeDisplayCoords = transformToFractureDisplayCoords(nodeCoords, fractureXf, *displayCoordTransform);
}
RimRegularLegendConfig* legendConfig = nullptr;
if (activeView.fractureColors() && activeView.fractureColors()->isChecked())
{
legendConfig = activeView.fractureColors()->activeLegend();
}
// Show selected result on the surface geometry and filter out triangles that have result values near 0
if (legendConfig)
{
// Construct array with per node result values that correspond to the node coordinates of the triangle mesh
// Since some time steps don't have result vales, we initialize the array to well known values before populating it
std::vector<double> perNodeResultValues(nodeDisplayCoords.size(), HUGE_VAL);
{
size_t idx = 0;
const std::vector<std::vector<double>> dataToPlot =
stimPlanFracTemplate->resultValues(activeView.fractureColors()->uiResultName(),
activeView.fractureColors()->unit(),
stimPlanFracTemplate->activeTimeStepIndex());
for (const std::vector<double>& dataAtY : dataToPlot)
{
for (double val : dataAtY)
{
perNodeResultValues[idx++] = val;
}
}
}
CVF_ASSERT(perNodeResultValues.size() == nodeDisplayCoords.size());
std::vector<cvf::uint> triIndicesToInclude;
for (size_t i = 0; i < triangleIndices.size(); i += 6)
{
// Include all triangles where at least one of the vertices in the triangle pair has a value above threshold
bool includeThisTrianglePair = false;
for (size_t j = 0; j < 6; j++)
{
if (perNodeResultValues[triangleIndices[i + j]] > 1e-7)
{
includeThisTrianglePair = true;
}
}
if (includeThisTrianglePair)
{
for (size_t j = 0; j < 6; j++)
{
triIndicesToInclude.push_back(triangleIndices[i + j]);
}
}
}
if (triIndicesToInclude.empty())
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triIndicesToInclude, nodeDisplayCoords);
const cvf::ScalarMapper* scalarMapper = legendConfig->scalarMapper();
CVF_ASSERT(scalarMapper);
cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray(nodeDisplayCoords.size());
textureCoords->setAll(cvf::Vec2f(0.5f, 1.0f));
for (size_t i = 0; i < perNodeResultValues.size(); i++)
{
const double val = perNodeResultValues[i];
if (val < HUGE_VAL && val == val)
{
textureCoords->set(i, scalarMapper->mapToTextureCoord(val));
}
}
geo->setTextureCoordArray(textureCoords.p());
cvf::ref<cvf::Part> surfacePart =
createScalarMapperPart(geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled());
return surfacePart;
}
else
{
// No result is mapped, show the entire StimPlan surface with default color
return createSingleColorSurfacePart(triangleIndices, nodeDisplayCoords, activeView.fractureColors()->defaultColor());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createSingleColorSurfacePart(const std::vector<cvf::uint>& triangleIndices,
const std::vector<cvf::Vec3f>& nodeCoords,
const cvf::Color3f& color)
{
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triangleIndices, nodeCoords);
cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_stimPlan");
surfacePart->setDrawable(geo.p());
surfacePart->setPriority(RivPartPriority::PartType::BaseLevel);
surfacePart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));
cvf::Color4f fractureColor = cvf::Color4f(color);
caf::SurfaceEffectGenerator surfaceGen(fractureColor, caf::PO_1);
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
surfacePart->setEffect(eff.p());
return surfacePart;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanElementColorSurfacePart(const RimEclipseView& activeView)
{
CVF_ASSERT(m_rimFracture);
RimStimPlanFractureTemplate* stimPlanFracTemplate =
dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
CVF_ASSERT(stimPlanFracTemplate);
if (!stimPlanFracTemplate->fractureGrid()) return nullptr;
auto displayCoordTransform = activeView.displayCoordTransform();
if (displayCoordTransform.isNull()) return nullptr;
std::vector<cvf::Vec3f> stimPlanMeshVertices;
cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray;
const cvf::ScalarMapper* scalarMapper = nullptr;
{
std::vector<RigFractureCell> stimPlanCells = stimPlanFracTemplate->fractureGrid()->fractureCells();
RimRegularLegendConfig* legendConfig = nullptr;
if (activeView.fractureColors() && activeView.fractureColors()->isChecked() &&
activeView.fractureColors()->activeLegend())
{
legendConfig = activeView.fractureColors()->activeLegend();
scalarMapper = legendConfig->scalarMapper();
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
std::vector<double> prCellResults = stimPlanFracTemplate->fractureGridResults(
resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex());
textureCoords->reserve(prCellResults.size() * 4);
for (size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx)
{
if (prCellResults[cIdx] > 1e-7)
{
const RigFractureCell& stimPlanCell = stimPlanCells[cIdx];
std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
for (const cvf::Vec3d& cellCorner : stimPlanCellPolygon)
{
stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
textureCoords->add(scalarMapper->mapToTextureCoord(prCellResults[cIdx]));
}
}
}
textureCoords->squeeze();
}
else
{
for (const auto& stimPlanCell : stimPlanCells)
{
for (const auto& cellCorner : stimPlanCell.getPolygon())
{
stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
}
}
}
}
if (stimPlanMeshVertices.empty())
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> nodeDisplayCoords =
transformToFractureDisplayCoords(stimPlanMeshVertices, fractureXf, *displayCoordTransform);
std::vector<cvf::uint> triIndicesToInclude;
size_t cellCount = stimPlanMeshVertices.size() / 4;
for (cvf::uint i = 0; i < cellCount; i++)
{
triIndicesToInclude.push_back(i * 4 + 0);
triIndicesToInclude.push_back(i * 4 + 1);
triIndicesToInclude.push_back(i * 4 + 2);
triIndicesToInclude.push_back(i * 4 + 0);
triIndicesToInclude.push_back(i * 4 + 2);
triIndicesToInclude.push_back(i * 4 + 3);
}
// Show selected result on the surface geometry and filter out triangles that have result values near 0
if (scalarMapper)
{
if (triIndicesToInclude.empty())
{
return nullptr;
}
cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triIndicesToInclude, nodeDisplayCoords);
geo->setTextureCoordArray(textureCoords.p());
cvf::ref<cvf::Part> surfacePart =
createScalarMapperPart(geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled());
return surfacePart;
}
else
{
// No result is mapped, show the entire StimPlan surface with default color
return createSingleColorSurfacePart(triIndicesToInclude, nodeDisplayCoords, activeView.fractureColors()->defaultColor());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createContainmentMaskPart(const RimEclipseView& activeView)
{
std::vector<cvf::Vec3d> borderPolygonLocalCS = fractureBorderPolygon();
cvf::Mat4d frMx = m_rimFracture->transformMatrix();
cvf::BoundingBox frBBox;
std::vector<cvf::Vec3d> borderPolygonLocalCsd;
for (const auto& pv : borderPolygonLocalCS)
{
cvf::Vec3d pvd(pv);
borderPolygonLocalCsd.push_back(pvd);
pvd.transformPoint(frMx);
frBBox.add(pvd);
}
std::vector<size_t> cellCandidates;
activeView.mainGrid()->findIntersectingCells(frBBox, &cellCandidates);
auto displCoordTrans = activeView.displayCoordTransform();
std::vector<cvf::Vec3f> maskTriangles;
RimEclipseCase* eclipseCase = nullptr;
activeView.firstAncestorOrThisOfType(eclipseCase);
auto reservoirCellIndicesOpenForFlow = RimFractureContainmentTools::reservoirCellIndicesOpenForFlow(eclipseCase, m_rimFracture);
for (size_t resCellIdx : cellCandidates)
{
if (!m_rimFracture->isEclipseCellOpenForFlow(activeView.mainGrid(), reservoirCellIndicesOpenForFlow, resCellIdx))
{
// Calculate Eclipse cell intersection with fracture plane
std::array<cvf::Vec3d, 8> corners;
activeView.mainGrid()->cellCornerVertices(resCellIdx, corners.data());
std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons(corners, frMx, eclCellPolygons);
if (!hasIntersection || eclCellPolygons.empty()) continue;
// Transform eclCell - plane intersection onto fracture
cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
for (std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
{
for (cvf::Vec3d& v : eclCellPolygon)
{
v.transformPoint(invertedTransformMatrix);
}
}
cvf::Vec3d fractureNormal = cvf::Vec3d(frMx.col(2));
for (const std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
{
// Clip Eclipse cell polygon with fracture border
std::vector<std::vector<cvf::Vec3d>> clippedPolygons =
RigCellGeometryTools::intersectPolygons(eclCellPolygon, borderPolygonLocalCsd);
for (auto& clippedPolygon : clippedPolygons)
{
for (auto& v : clippedPolygon)
{
v.transformPoint(frMx);
}
}
// Create triangles from the clipped polygons
for (auto& clippedPolygon : clippedPolygons)
{
cvf::EarClipTesselator tess;
tess.setNormal(fractureNormal);
cvf::Vec3dArray cvfNodes(clippedPolygon);
tess.setGlobalNodeArray(cvfNodes);
std::vector<size_t> polyIndexes;
for (size_t idx = 0; idx < clippedPolygon.size(); ++idx)
polyIndexes.push_back(idx);
tess.setPolygonIndices(polyIndexes);
std::vector<size_t> triangleIndices;
tess.calculateTriangles(&triangleIndices);
for (size_t idx : triangleIndices)
{
maskTriangles.push_back(cvf::Vec3f(displCoordTrans->transformToDisplayCoord(clippedPolygon[idx])));
}
}
}
}
}
if (maskTriangles.size() >= 3)
{
cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
maskTriangleGeo->setVertexArray(new cvf::Vec3fArray(maskTriangles));
cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect(cvf::PT_TRIANGLES);
primitives->setIndexCount(maskTriangles.size());
maskTriangleGeo->addPrimitiveSet(primitives.p());
maskTriangleGeo->computeNormals();
cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part(0, "FractureContainmentMaskPart");
containmentMaskPart->setDrawable(maskTriangleGeo.p());
containmentMaskPart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));
cvf::Color4f maskColor = cvf::Color4f(cvf::Color3f(cvf::Color3::GRAY));
caf::SurfaceEffectGenerator surfaceGen(maskColor, caf::PO_NONE);
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
containmentMaskPart->setEffect(eff.p());
return containmentMaskPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
/// Create mask for the parts outside the grid cells of the reservoir
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createMaskOfFractureOutsideGrid(const RimEclipseView& activeView)
{
cvf::Mat4d frMx = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> maskTriangles;
auto displCoordTrans = activeView.displayCoordTransform();
for (const auto& visibleFracturePolygon : m_visibleFracturePolygons)
{
std::vector<cvf::Vec3d> borderOfFractureCellPolygonLocalCsd;
cvf::BoundingBox frBBox;
for (const auto& pv : visibleFracturePolygon)
{
cvf::Vec3d pvd(pv);
borderOfFractureCellPolygonLocalCsd.push_back(pvd);
pvd.transformPoint(frMx);
frBBox.add(pvd);
}
std::vector<std::vector<cvf::Vec3d>> clippedPolygons;
std::vector<size_t> cellCandidates;
activeView.mainGrid()->findIntersectingCells(frBBox, &cellCandidates);
if (cellCandidates.empty())
{
clippedPolygons.push_back(borderOfFractureCellPolygonLocalCsd);
}
else
{
// Check if fracture polygon is fully inside the grid
bool allPointsInsideGrid = true;
for (const auto& v : borderOfFractureCellPolygonLocalCsd)
{
auto pointInDomainCoords = v.getTransformedPoint(frMx);
bool pointInsideGrid = false;
RigMainGrid* mainGrid = activeView.mainGrid();
std::array<cvf::Vec3d, 8> corners;
for (size_t cellIndex : cellCandidates)
{
mainGrid->cellCornerVertices(cellIndex, corners.data());
if (RigHexIntersectionTools::isPointInCell(pointInDomainCoords, corners.data()))
{
pointInsideGrid = true;
break;
}
}
if (!pointInsideGrid)
{
allPointsInsideGrid = false;
break;
}
}
if (!allPointsInsideGrid)
{
std::vector<std::vector<cvf::Vec3d>> allEclCellPolygons;
for (size_t resCellIdx : cellCandidates)
{
// Calculate Eclipse cell intersection with fracture plane
std::array<cvf::Vec3d, 8> corners;
activeView.mainGrid()->cellCornerVertices(resCellIdx, corners.data());
std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons(corners, frMx, eclCellPolygons);
if (!hasIntersection || eclCellPolygons.empty()) continue;
// Transform eclCell - plane intersection onto fracture
cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
for (std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
{
for (cvf::Vec3d& v : eclCellPolygon)
{
v.transformPoint(invertedTransformMatrix);
}
allEclCellPolygons.push_back(eclCellPolygon);
}
}
{
std::vector<std::vector<cvf::Vec3d>> polys =
RigCellGeometryTools::subtractPolygons(borderOfFractureCellPolygonLocalCsd, allEclCellPolygons);
for (const auto& polygon : polys)
{
clippedPolygons.push_back(polygon);
}
}
}
}
for (auto& clippedPolygon : clippedPolygons)
{
for (auto& point : clippedPolygon)
{
point.transformPoint(frMx);
}
}
// Create triangles from the clipped polygons
cvf::Vec3d fractureNormal = cvf::Vec3d(frMx.col(2));
for (const auto& clippedPolygon : clippedPolygons)
{
cvf::EarClipTesselator tess;
tess.setNormal(fractureNormal);
cvf::Vec3dArray cvfNodes(clippedPolygon);
tess.setGlobalNodeArray(cvfNodes);
std::vector<size_t> polyIndexes;
for (size_t idx = 0; idx < clippedPolygon.size(); ++idx)
polyIndexes.push_back(idx);
tess.setPolygonIndices(polyIndexes);
std::vector<size_t> triangleIndices;
tess.calculateTriangles(&triangleIndices);
for (size_t idx : triangleIndices)
{
maskTriangles.push_back(cvf::Vec3f(displCoordTrans->transformToDisplayCoord(clippedPolygon[idx])));
}
}
}
if (maskTriangles.size() >= 3)
{
cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
maskTriangleGeo->setVertexArray(new cvf::Vec3fArray(maskTriangles));
cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect(cvf::PT_TRIANGLES);
primitives->setIndexCount(maskTriangles.size());
maskTriangleGeo->addPrimitiveSet(primitives.p());
maskTriangleGeo->computeNormals();
cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part(0, "FractureContainmentMaskPart");
containmentMaskPart->setDrawable(maskTriangleGeo.p());
containmentMaskPart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));
cvf::Color4f maskColor = cvf::Color4f(cvf::Color3f(cvf::Color3::GRAY));
caf::SurfaceEffectGenerator surfaceGen(maskColor, caf::PO_NONE);
cvf::ref<cvf::Effect> eff = surfaceGen.generateCachedEffect();
containmentMaskPart->setEffect(eff.p());
return containmentMaskPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendFracturePerforationLengthParts(const RimEclipseView& activeView, cvf::ModelBasicList* model)
{
if (!m_rimFracture->isChecked()) return;
if (!m_rimFracture->fractureTemplate()) return;
if (m_rimFracture->fractureTemplate()->orientationType() != RimFractureTemplate::ALONG_WELL_PATH) return;
auto displayCoordTransform = activeView.displayCoordTransform();
if (displayCoordTransform.isNull()) return;
double characteristicCellSize = activeView.ownerCase()->characteristicCellSize();
double wellPathRadius = 1.0;
{
RimWellPath* rimWellPath = nullptr;
m_rimFracture->firstAncestorOrThisOfType(rimWellPath);
if (rimWellPath)
{
wellPathRadius = rimWellPath->wellPathRadius(characteristicCellSize);
}
}
{
RimSimWellInView* simWell = nullptr;
m_rimFracture->firstAncestorOrThisOfType(simWell);
if (simWell)
{
wellPathRadius = simWell->pipeRadius();
}
}
std::vector<cvf::Vec3d> displayCoords =
displayCoordTransform->transformToDisplayCoords(m_rimFracture->perforationLengthCenterLineCoords());
if (!displayCoords.empty())
{
cvf::ref<RivObjectSourceInfo> objectSourceInfo = new RivObjectSourceInfo(m_rimFracture);
double perforationRadius = wellPathRadius * 1.2;
cvf::Collection<cvf::Part> parts;
RivPipeGeometryGenerator geoGenerator;
geoGenerator.cylinderWithCenterLineParts(
&parts, displayCoords, RiaColorTables::wellPathComponentColors()[RiaDefines::PERFORATION_INTERVAL], perforationRadius);
for (auto part : parts)
{
part->setSourceInfo(objectSourceInfo.p());
model->addPart(part.p());
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanMeshPart(const RimEclipseView& activeView)
{
if (!m_rimFracture->fractureTemplate()) return nullptr;
RimStimPlanFractureTemplate* stimPlanFracTemplate =
dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
if (!stimPlanFracTemplate) return nullptr;
cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = createStimPlanMeshDrawable(stimPlanFracTemplate, activeView);
if (stimPlanMeshGeo.notNull())
{
cvf::ref<cvf::Part> stimPlanMeshPart = new cvf::Part(0, "StimPlanMesh");
stimPlanMeshPart->setDrawable(stimPlanMeshGeo.p());
stimPlanMeshPart->updateBoundingBox();
stimPlanMeshPart->setPriority(RivPartPriority::PartType::TransparentMeshLines);
caf::MeshEffectGenerator lineEffGen(cvf::Color3::BLACK);
lineEffGen.setLineWidth(1.0f);
cvf::ref<cvf::Effect> eff = lineEffGen.generateCachedEffect();
stimPlanMeshPart->setEffect(eff.p());
return stimPlanMeshPart;
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::createStimPlanMeshDrawable(RimStimPlanFractureTemplate* stimPlanFracTemplate,
const RimEclipseView& activeView)
{
if (!stimPlanFracTemplate->fractureGrid()) return nullptr;
auto displayCoordTransform = activeView.displayCoordTransform();
if (displayCoordTransform.isNull()) return nullptr;
std::vector<RigFractureCell> stimPlanCells = stimPlanFracTemplate->fractureGrid()->fractureCells();
std::vector<cvf::Vec3f> stimPlanMeshVertices;
QString resultNameFromColors = activeView.fractureColors()->uiResultName();
QString resultUnitFromColors = activeView.fractureColors()->unit();
std::vector<double> prCellResults = stimPlanFracTemplate->fractureGridResults(
resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex());
m_visibleFracturePolygons.clear();
for (size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx)
{
if (prCellResults[cIdx] > 1e-7)
{
const RigFractureCell& stimPlanCell = stimPlanCells[cIdx];
std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
for (const cvf::Vec3d& cellCorner : stimPlanCellPolygon)
{
stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
}
m_visibleFracturePolygons.push_back(stimPlanCellPolygon);
}
}
if (stimPlanMeshVertices.empty())
{
return nullptr;
}
cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
std::vector<cvf::Vec3f> stimPlanMeshVerticesDisplayCoords =
transformToFractureDisplayCoords(stimPlanMeshVertices, fractureXf, *displayCoordTransform);
cvf::Vec3fArray* stimPlanMeshVertexList;
stimPlanMeshVertexList = new cvf::Vec3fArray;
stimPlanMeshVertexList->assign(stimPlanMeshVerticesDisplayCoords);
cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = new cvf::DrawableGeo;
stimPlanMeshGeo->setVertexArray(stimPlanMeshVertexList);
cvf::ref<cvf::UIntArray> indices = RivFaultGeometryGenerator::lineIndicesFromQuadVertexArray(stimPlanMeshVertexList);
cvf::ref<cvf::PrimitiveSetIndexedUInt> prim = new cvf::PrimitiveSetIndexedUInt(cvf::PT_LINES);
prim->setIndices(indices.p());
stimPlanMeshGeo->addPrimitiveSet(prim.p());
return stimPlanMeshGeo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createScalarMapperPart(cvf::DrawableGeo* drawableGeo,
const cvf::ScalarMapper* scalarMapper,
RimFracture* fracture,
bool disableLighting)
{
cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_stimPlan");
surfacePart->setDrawable(drawableGeo);
surfacePart->setPriority(RivPartPriority::PartType::BaseLevel);
surfacePart->setSourceInfo(new RivObjectSourceInfo(fracture));
caf::ScalarMapperEffectGenerator effGen(scalarMapper, caf::PO_1);
effGen.disableLighting(disableLighting);
cvf::ref<cvf::Effect> eff = effGen.generateCachedEffect();
surfacePart->setEffect(eff.p());
return surfacePart;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RivWellFracturePartMgr::fractureBorderPolygon()
{
return RigCellGeometryTools::unionOfPolygons(m_visibleFracturePolygons);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3f>
RivWellFracturePartMgr::transformToFractureDisplayCoords(const std::vector<cvf::Vec3f>& coordinatesVector,
cvf::Mat4d m,
const caf::DisplayCoordTransform& displayCoordTransform)
{
std::vector<cvf::Vec3f> polygonInDisplayCoords;
polygonInDisplayCoords.reserve(coordinatesVector.size());
for (const cvf::Vec3f& v : coordinatesVector)
{
cvf::Vec3d vd(v);
vd.transformPoint(m);
cvf::Vec3d displayCoordsDouble = displayCoordTransform.transformToDisplayCoord(vd);
polygonInDisplayCoords.push_back(cvf::Vec3f(displayCoordsDouble));
}
return polygonInDisplayCoords;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::buildDrawableGeoFromTriangles(const std::vector<cvf::uint>& triangleIndices,
const std::vector<cvf::Vec3f>& nodeCoords)
{
CVF_ASSERT(triangleIndices.size() > 0);
CVF_ASSERT(nodeCoords.size() > 0);
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
cvf::ref<cvf::UIntArray> indices = new cvf::UIntArray(triangleIndices);
cvf::ref<cvf::Vec3fArray> vertices = new cvf::Vec3fArray(nodeCoords);
geo->setVertexArray(vertices.p());
geo->addPrimitiveSet(new cvf::PrimitiveSetIndexedUInt(cvf::PT_TRIANGLES, indices.p()));
geo->computeNormals();
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Transform> RivWellFracturePartMgr::createLocalTransformFromTranslation(const cvf::Vec3d& translation)
{
cvf::Mat4d m = cvf::Mat4d::fromTranslation(translation);
cvf::ref<cvf::Transform> partTransform = new cvf::Transform;
partTransform->setLocalTransform(m);
return partTransform;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(cvf::ModelBasicList* model,
cvf::Part* part,
const cvf::Vec3d& translation)
{
{
cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation(translation);
part->setTransform(partTransform.p());
model->addPart(part);
}
{
// Create a copy of the part to be able to assign a transformation matrix representing the translation in the opposite
// direction
cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation(-translation);
auto copy = part->shallowCopy();
copy->setTransform(partTransform.p());
model->addPart(copy.p());
}
}