mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-24 15:26:48 -06:00
418 lines
17 KiB
C++
418 lines
17 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2016- Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigFlowDiagSolverInterface.h"
|
|
|
|
#include "RifEclipseOutputFileTools.h"
|
|
#include "RifReaderInterface.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigEclipseCaseData.h"
|
|
|
|
#include "RigFlowDiagInterfaceTools.h"
|
|
#include "opm/flowdiagnostics/DerivedQuantities.hpp"
|
|
|
|
#include "RimEclipseCase.h"
|
|
#include "RimEclipseResultCase.h"
|
|
#include "RimFlowDiagSolution.h"
|
|
|
|
#include <QMessageBox>
|
|
#include "cafProgressInfo.h"
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigFlowDiagTimeStepResult::RigFlowDiagTimeStepResult(size_t activeCellCount)
|
|
: m_activeCellCount(activeCellCount), m_lorenzCoefficient(HUGE_VAL)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigFlowDiagTimeStepResult::setTracerTOF(const std::string& tracerName, const std::map<int, double>& cellValues)
|
|
{
|
|
std::set<std::string> tracers;
|
|
tracers.insert(tracerName);
|
|
|
|
RigFlowDiagResultAddress resAddr(RIG_FLD_TOF_RESNAME, tracers);
|
|
|
|
this->addResult(resAddr, cellValues);
|
|
|
|
std::vector<double>& activeCellValues = m_nativeResults[resAddr];
|
|
for (double & val: activeCellValues)
|
|
{
|
|
val = val * 1.15741e-5; // days pr second. Converting to days
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigFlowDiagTimeStepResult::setTracerFraction(const std::string& tracerName, const std::map<int, double>& cellValues)
|
|
{
|
|
std::set<std::string> tracers;
|
|
tracers.insert(tracerName);
|
|
|
|
this->addResult(RigFlowDiagResultAddress(RIG_FLD_CELL_FRACTION_RESNAME, tracers), cellValues);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigFlowDiagTimeStepResult::setInjProdWellPairFlux(const std::string& injectorTracerName,
|
|
const std::string& producerTracerName,
|
|
const std::pair<double, double>& injProdFluxes)
|
|
{
|
|
m_injProdWellPairFluxes[std::make_pair(injectorTracerName, producerTracerName)] = injProdFluxes;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigFlowDiagTimeStepResult::addResult(const RigFlowDiagResultAddress& resAddr, const std::map<int, double>& cellValues)
|
|
{
|
|
std::vector<double>& activeCellValues = m_nativeResults[resAddr];
|
|
|
|
CVF_ASSERT(activeCellValues.empty());
|
|
|
|
activeCellValues.resize(m_activeCellCount, HUGE_VAL);
|
|
|
|
for (const auto& pairIt : cellValues)
|
|
{
|
|
activeCellValues[pairIt.first] = pairIt.second;
|
|
}
|
|
}
|
|
|
|
|
|
class RigOpmFlowDiagStaticData : public cvf::Object
|
|
{
|
|
public:
|
|
RigOpmFlowDiagStaticData(const std::string& grid, const std::string& init)
|
|
{
|
|
Opm::ECLInitFileData initData(init);
|
|
|
|
m_eclGraph.reset(new Opm::ECLGraph(Opm::ECLGraph::load(grid, initData)));
|
|
|
|
m_hasUnifiedRestartFile = false;
|
|
m_poreVolume = m_eclGraph->poreVolume();
|
|
}
|
|
|
|
std::unique_ptr<Opm::ECLGraph> m_eclGraph;
|
|
std::vector<double> m_poreVolume;
|
|
std::unique_ptr<Opm::FlowDiagnostics::Toolbox> m_fldToolbox;
|
|
bool m_hasUnifiedRestartFile;
|
|
std::vector<Opm::ECLRestartData> m_singleRestartDataTimeSteps;
|
|
std::unique_ptr<Opm::ECLRestartData> m_unifiedRestartData;
|
|
};
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigFlowDiagSolverInterface::RigFlowDiagSolverInterface(RimEclipseResultCase * eclipseCase)
|
|
: m_eclipseCase(eclipseCase)
|
|
{
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigFlowDiagSolverInterface::~RigFlowDiagSolverInterface()
|
|
{
|
|
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigFlowDiagTimeStepResult RigFlowDiagSolverInterface::calculate(size_t timeStepIndex,
|
|
std::map<std::string, std::vector<int> > injectorTracers,
|
|
std::map<std::string, std::vector<int> > producerTracers)
|
|
{
|
|
using namespace Opm::FlowDiagnostics;
|
|
|
|
RigFlowDiagTimeStepResult result(m_eclipseCase->eclipseCaseData()->activeCellInfo(RifReaderInterface::MATRIX_RESULTS)->reservoirActiveCellCount());
|
|
|
|
caf::ProgressInfo progressInfo(8, "Calculating Flow Diagnostics");
|
|
|
|
if ( m_opmFlowDiagStaticData.isNull() )
|
|
{
|
|
progressInfo.setProgressDescription("Grid access");
|
|
|
|
// Get set of files
|
|
QString gridFileName = m_eclipseCase->gridFileName();
|
|
|
|
QStringList m_filesWithSameBaseName;
|
|
|
|
if ( !RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName(gridFileName, &m_filesWithSameBaseName) ) return result;
|
|
|
|
QString initFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_INIT_FILE);
|
|
|
|
m_opmFlowDiagStaticData = new RigOpmFlowDiagStaticData(gridFileName.toStdString(),
|
|
initFileName.toStdString());
|
|
|
|
progressInfo.incrementProgress();
|
|
progressInfo.setProgressDescription("Calculating Connectivities");
|
|
|
|
const Opm::FlowDiagnostics::ConnectivityGraph connGraph =
|
|
Opm::FlowDiagnostics::ConnectivityGraph{ static_cast<int>(m_opmFlowDiagStaticData->m_eclGraph->numCells()),
|
|
m_opmFlowDiagStaticData->m_eclGraph->neighbours() };
|
|
|
|
progressInfo.incrementProgress();
|
|
progressInfo.setProgressDescription("Initialize Solver");
|
|
|
|
// Create the Toolbox.
|
|
|
|
m_opmFlowDiagStaticData->m_fldToolbox.reset(new Opm::FlowDiagnostics::Toolbox{ connGraph });
|
|
m_opmFlowDiagStaticData->m_fldToolbox->assignPoreVolume( m_opmFlowDiagStaticData->m_poreVolume);
|
|
|
|
// Look for unified restart file
|
|
|
|
QString restartFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_UNIFIED_RESTART_FILE);
|
|
if ( !restartFileName.isEmpty() )
|
|
{
|
|
m_opmFlowDiagStaticData->m_unifiedRestartData.reset(new Opm::ECLRestartData(Opm::ECLRestartData(restartFileName.toStdString())));
|
|
m_opmFlowDiagStaticData->m_hasUnifiedRestartFile = true;
|
|
}
|
|
else
|
|
{
|
|
QStringList restartFileNames = RifEclipseOutputFileTools::filterFileNamesOfType(m_filesWithSameBaseName, ECL_RESTART_FILE);
|
|
|
|
size_t restartFileCount = static_cast<size_t>(restartFileNames.size());
|
|
size_t maxTimeStepCount = m_eclipseCase->eclipseCaseData()->results(RifReaderInterface::MATRIX_RESULTS)->maxTimeStepCount();
|
|
|
|
if (restartFileCount <= timeStepIndex && restartFileCount != maxTimeStepCount )
|
|
{
|
|
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: Could not find all the restart files. Results will not be loaded.");
|
|
return result;
|
|
}
|
|
|
|
restartFileNames.sort(); // To make sure they are sorted in increasing *.X000N order. Hack. Should probably be actual time stored on file.
|
|
m_opmFlowDiagStaticData->m_hasUnifiedRestartFile = false;
|
|
|
|
for (auto restartFileName : restartFileNames)
|
|
{
|
|
m_opmFlowDiagStaticData->m_singleRestartDataTimeSteps.push_back(Opm::ECLRestartData(restartFileName.toStdString()));
|
|
}
|
|
}
|
|
}
|
|
|
|
progressInfo.setProgress(3);
|
|
progressInfo.setProgressDescription("Assigning Flux Field");
|
|
|
|
Opm::ECLRestartData* currentRestartData = nullptr;
|
|
|
|
if ( ! m_opmFlowDiagStaticData->m_hasUnifiedRestartFile )
|
|
{
|
|
currentRestartData = &(m_opmFlowDiagStaticData->m_singleRestartDataTimeSteps[timeStepIndex]);
|
|
}
|
|
else
|
|
{
|
|
currentRestartData = m_opmFlowDiagStaticData->m_unifiedRestartData.get();
|
|
}
|
|
|
|
CVF_ASSERT(currentRestartData);
|
|
|
|
size_t resultIndexWithMaxTimeSteps = cvf::UNDEFINED_SIZE_T;
|
|
m_eclipseCase->eclipseCaseData()->results(RifReaderInterface::MATRIX_RESULTS)->maxTimeStepCount(&resultIndexWithMaxTimeSteps);
|
|
|
|
int reportStepNumber = m_eclipseCase->eclipseCaseData()->results(RifReaderInterface::MATRIX_RESULTS)->reportStepNumber(resultIndexWithMaxTimeSteps, timeStepIndex);
|
|
|
|
if ( !currentRestartData->selectReportStep(reportStepNumber) )
|
|
{
|
|
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: Could not find the requested timestep in the result file. Results will not be loaded.");
|
|
return result;
|
|
}
|
|
|
|
|
|
// Set up flow Toolbox with timestep data
|
|
Opm::FlowDiagnostics::CellSetValues sumWellFluxPrCell;
|
|
|
|
{
|
|
Opm::FlowDiagnostics::ConnectionValues connectionsVals = RigFlowDiagInterfaceTools::extractFluxFieldFromRestartFile(*(m_opmFlowDiagStaticData->m_eclGraph),
|
|
*currentRestartData);
|
|
|
|
m_opmFlowDiagStaticData->m_fldToolbox->assignConnectionFlux(connectionsVals);
|
|
|
|
progressInfo.incrementProgress();
|
|
|
|
Opm::ECLWellSolution wsol = Opm::ECLWellSolution{-1.0 , false};
|
|
|
|
std::vector<std::string> gridNames = m_opmFlowDiagStaticData->m_eclGraph->activeGrids();
|
|
|
|
const std::vector<Opm::ECLWellSolution::WellData> well_fluxes = wsol.solution(*currentRestartData, gridNames);
|
|
|
|
sumWellFluxPrCell = RigFlowDiagInterfaceTools::extractWellFlows(*(m_opmFlowDiagStaticData->m_eclGraph), well_fluxes);
|
|
|
|
m_opmFlowDiagStaticData->m_fldToolbox->assignInflowFlux(sumWellFluxPrCell);
|
|
|
|
// Start Hack: Filter connection cells with inconsistent well in flow direction (Hack, we should do something better)
|
|
|
|
for ( auto& tracerCellIdxsPair: injectorTracers )
|
|
{
|
|
std::vector<int> filteredCellIndices;
|
|
|
|
for (int activeCellIdx : tracerCellIdxsPair.second)
|
|
{
|
|
auto activeCellIdxFluxPair = sumWellFluxPrCell.find(activeCellIdx);
|
|
CVF_TIGHT_ASSERT(activeCellIdxFluxPair != sumWellFluxPrCell.end());
|
|
|
|
if (activeCellIdxFluxPair->second > 0 )
|
|
{
|
|
filteredCellIndices.push_back(activeCellIdx);
|
|
}
|
|
}
|
|
|
|
if (tracerCellIdxsPair.second.size() != filteredCellIndices.size()) tracerCellIdxsPair.second = filteredCellIndices;
|
|
}
|
|
|
|
for ( auto& tracerCellIdxsPair: producerTracers )
|
|
{
|
|
std::vector<int> filteredCellIndices;
|
|
|
|
for (int activeCellIdx : tracerCellIdxsPair.second)
|
|
{
|
|
auto activeCellIdxFluxPair = sumWellFluxPrCell.find(activeCellIdx);
|
|
CVF_TIGHT_ASSERT(activeCellIdxFluxPair != sumWellFluxPrCell.end());
|
|
|
|
if (activeCellIdxFluxPair->second < 0 )
|
|
{
|
|
filteredCellIndices.push_back(activeCellIdx);
|
|
}
|
|
}
|
|
if (tracerCellIdxsPair.second.size() != filteredCellIndices.size()) tracerCellIdxsPair.second = filteredCellIndices;
|
|
}
|
|
|
|
// End Hack
|
|
}
|
|
|
|
progressInfo.incrementProgress();
|
|
progressInfo.setProgressDescription("Injector Solution");
|
|
|
|
{
|
|
// Injection Solution
|
|
|
|
std::vector<CellSet> injectorCellSets;
|
|
for ( const auto& tIt: injectorTracers )
|
|
{
|
|
injectorCellSets.push_back(CellSet(CellSetID(tIt.first), tIt.second));
|
|
}
|
|
|
|
std::unique_ptr<Toolbox::Forward> injectorSolution;
|
|
try
|
|
{
|
|
injectorSolution.reset(new Toolbox::Forward( m_opmFlowDiagStaticData->m_fldToolbox->computeInjectionDiagnostics(injectorCellSets)));
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: " + QString(e.what()));
|
|
return result;
|
|
}
|
|
|
|
for ( const CellSetID& tracerId: injectorSolution->fd.startPoints() )
|
|
{
|
|
CellSetValues tofVals = injectorSolution->fd.timeOfFlight(tracerId);
|
|
result.setTracerTOF(tracerId.to_string(), tofVals);
|
|
CellSetValues fracVals = injectorSolution->fd.concentration(tracerId);
|
|
result.setTracerFraction(tracerId.to_string(), fracVals);
|
|
}
|
|
|
|
progressInfo.incrementProgress();
|
|
progressInfo.setProgressDescription("Producer Solution");
|
|
|
|
// Producer Solution
|
|
|
|
std::vector<CellSet> prodjCellSets;
|
|
for ( const auto& tIt: producerTracers )
|
|
{
|
|
prodjCellSets.push_back(CellSet(CellSetID(tIt.first), tIt.second));
|
|
}
|
|
|
|
std::unique_ptr<Toolbox::Reverse> producerSolution;
|
|
try
|
|
{
|
|
producerSolution.reset(new Toolbox::Reverse(m_opmFlowDiagStaticData->m_fldToolbox->computeProductionDiagnostics(prodjCellSets)));
|
|
}
|
|
catch ( const std::exception& e )
|
|
{
|
|
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: " + QString(e.what()));
|
|
return result;
|
|
}
|
|
|
|
for ( const CellSetID& tracerId: producerSolution->fd.startPoints() )
|
|
{
|
|
CellSetValues tofVals = producerSolution->fd.timeOfFlight(tracerId);
|
|
result.setTracerTOF(tracerId.to_string(), tofVals);
|
|
CellSetValues fracVals = producerSolution->fd.concentration(tracerId);
|
|
result.setTracerFraction(tracerId.to_string(), fracVals);
|
|
}
|
|
|
|
progressInfo.incrementProgress();
|
|
progressInfo.setProgressDescription("Well pair fluxes");
|
|
|
|
int producerTracerCount = static_cast<int>( prodjCellSets.size());
|
|
|
|
#pragma omp parallel for
|
|
for ( int pIdx = 0; pIdx < producerTracerCount; ++pIdx )
|
|
{
|
|
const auto& prodCellSet = prodjCellSets[pIdx];
|
|
|
|
for ( const auto& injCellSet : injectorCellSets )
|
|
{
|
|
std::pair<double, double> fluxPair = injectorProducerPairFlux(*(injectorSolution.get()),
|
|
*(producerSolution.get()),
|
|
injCellSet,
|
|
prodCellSet,
|
|
sumWellFluxPrCell);
|
|
#pragma omp critical
|
|
{
|
|
result.setInjProdWellPairFlux(injCellSet.id().to_string(),
|
|
prodCellSet.id().to_string(),
|
|
fluxPair);
|
|
}
|
|
}
|
|
}
|
|
|
|
try
|
|
{
|
|
Graph flowCapStorCapCurve = flowCapacityStorageCapacityCurve(*(injectorSolution.get()),
|
|
*(producerSolution.get()),
|
|
m_opmFlowDiagStaticData->m_poreVolume,
|
|
0.1);
|
|
|
|
result.setFlowCapStorageCapCurve(flowCapStorCapCurve);
|
|
result.setSweepEfficiencyCurve(sweepEfficiency(flowCapStorCapCurve));
|
|
result.setLorenzCoefficient(lorenzCoefficient(flowCapStorCapCurve));
|
|
}
|
|
catch ( const std::exception& e )
|
|
{
|
|
QMessageBox::critical(nullptr, "ResInsight", "Flow Diagnostics: " + QString(e.what()));
|
|
}
|
|
}
|
|
|
|
return result; // Relying on implicit move constructor
|
|
}
|
|
|