mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-24 15:26:48 -06:00
326 lines
11 KiB
C++
326 lines
11 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2015- Statoil ASA
|
|
// Copyright (C) 2015- Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "cvfAssert.h"
|
|
#include "cvfMath.h"
|
|
#include "cvfSystem.h"
|
|
#include <algorithm>
|
|
#include "cvfMatrix3.h"
|
|
#include <math.h>
|
|
|
|
namespace caf {
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Copy constructor
|
|
//----------------------------------------------------------------------------------------------------
|
|
template <typename S>
|
|
inline Tensor3<S>::Tensor3(const Tensor3& other)
|
|
{
|
|
cvf::System::memcpy(m_tensor, sizeof(m_tensor), other.m_tensor, sizeof(other.m_tensor));
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Constructor with explicit initialization of all tensor elements.
|
|
///
|
|
//----------------------------------------------------------------------------------------------------
|
|
template <typename S>
|
|
Tensor3<S>::Tensor3(S sxx, S syy, S szz, S sxy, S syz, S szx)
|
|
{
|
|
m_tensor[0] = sxx;
|
|
m_tensor[1] = syy;
|
|
m_tensor[2] = szz;
|
|
m_tensor[3] = sxy;
|
|
m_tensor[4] = syz;
|
|
m_tensor[5] = szx;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Assignment operator
|
|
//----------------------------------------------------------------------------------------------------
|
|
template <typename S>
|
|
inline Tensor3<S>& Tensor3<S>::operator=(const Tensor3& obj)
|
|
{
|
|
cvf::System::memcpy(m_tensor, sizeof(m_tensor), obj.m_tensor, sizeof(obj.m_tensor));
|
|
return *this;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Check if matrices are equal using exact comparisons.
|
|
//----------------------------------------------------------------------------------------------------
|
|
template<typename S>
|
|
bool Tensor3<S>::equals(const Tensor3& ten) const
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
if (m_tensor[i] != ten.m_tensor[i]) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Comparison operator. Checks for equality using exact comparisons.
|
|
//----------------------------------------------------------------------------------------------------
|
|
template <typename S>
|
|
bool Tensor3<S>::operator==(const Tensor3& rhs) const
|
|
{
|
|
return this->equals(rhs);
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------------------
|
|
/// Comparison operator. Checks for not equal using exact comparisons.
|
|
//----------------------------------------------------------------------------------------------------
|
|
template <typename S>
|
|
bool Tensor3<S>::operator!=(const Tensor3& rhs) const
|
|
{
|
|
int i;
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
if (m_tensor[i] != rhs.m_tensor[i]) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Get modifiable component 0,1,2. E.g. x = v[0];
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename S>
|
|
inline S Tensor3<S>::operator[](TensorComponentEnum index) const
|
|
{
|
|
CVF_TIGHT_ASSERT(index >= 0);
|
|
CVF_TIGHT_ASSERT(index < 6);
|
|
|
|
return m_tensor[index];
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Get const component 0,1,2. E.g. x = v[0];
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename S>
|
|
inline S& Tensor3<S>::operator[](TensorComponentEnum index)
|
|
{
|
|
CVF_TIGHT_ASSERT(index >= 0);
|
|
CVF_TIGHT_ASSERT(index < 6);
|
|
|
|
return m_tensor[index];
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template< typename S>
|
|
void Tensor3<S>::setFromInternalLayout(S* tensorData)
|
|
{
|
|
m_tensor[0] = tensorData[0];
|
|
m_tensor[1] = tensorData[1];
|
|
m_tensor[2] = tensorData[2];
|
|
m_tensor[3] = tensorData[3];
|
|
m_tensor[4] = tensorData[4];
|
|
m_tensor[5] = tensorData[5];
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template< typename S>
|
|
void Tensor3<S>::setFromAbaqusLayout(S* tensorData)
|
|
{
|
|
m_tensor[0] = tensorData[0];
|
|
m_tensor[1] = tensorData[1];
|
|
m_tensor[2] = tensorData[2];
|
|
m_tensor[3] = tensorData[3];
|
|
m_tensor[4] = tensorData[5];
|
|
m_tensor[5] = tensorData[4];
|
|
}
|
|
|
|
|
|
|
|
cvf::Mat3d cofactor3(const cvf::Mat3d& mx);
|
|
cvf::Vec3d eigenVector3(const cvf::Mat3d& mx, double eigenValue, bool* computedOk);
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Compute principal values and optionally the principal directions
|
|
/// The tensor must be laid out as follows: SXX, SYY, SZZ, SXY, SYZ, SZX
|
|
//--------------------------------------------------------------------------------------------------
|
|
template<typename S>
|
|
cvf::Vec3f Tensor3<S>::calculatePrincipals( cvf::Vec3f principalDirections[3])
|
|
{
|
|
CVF_TIGHT_ASSERT(m_tensor);
|
|
|
|
const float floatThreshold = 1.0e-30f;
|
|
const double doubleThreshold = 1.0e-60;
|
|
|
|
cvf::Vec3f principalValues;
|
|
|
|
// Init return arrays to invalid
|
|
|
|
principalValues[0] = std::numeric_limits<float>::infinity();
|
|
principalValues[1] = std::numeric_limits<float>::infinity();
|
|
principalValues[2] = std::numeric_limits<float>::infinity();
|
|
|
|
if (principalDirections)
|
|
{
|
|
principalDirections[0] = cvf::Vec3f::ZERO;
|
|
principalDirections[1] = cvf::Vec3f::ZERO;
|
|
principalDirections[2] = cvf::Vec3f::ZERO;
|
|
}
|
|
|
|
// Return if we have an undefined component
|
|
|
|
int i;
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
if (m_tensor[i] == std::numeric_limits<S>::infinity())
|
|
{
|
|
return principalValues;
|
|
}
|
|
}
|
|
|
|
// Return 0, 0, 0 if all components are zero
|
|
|
|
bool isAllTensCompsZero = true;
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
if (!(abs(m_tensor[i]) < floatThreshold))
|
|
{
|
|
isAllTensCompsZero = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isAllTensCompsZero)
|
|
{
|
|
return cvf::Vec3f::ZERO;
|
|
}
|
|
|
|
double SXX = m_tensor[0], SYY = m_tensor[1], SZZ = m_tensor[2];
|
|
double SXY = m_tensor[3], SYZ = m_tensor[4], SZX = m_tensor[5];
|
|
|
|
double pressure = -(SXX + SYY + SZZ)/3.0;
|
|
|
|
// Normally we would solve the eigenvalues by solving the 3'rd degree equation:
|
|
// -sigma^3 + A*sigma^2 - B*sigma + C = 0
|
|
// in which A, B, and C are the invariants of the stress tensor.
|
|
// http://www.engapplets.vt.edu/Mohr/java/nsfapplets/MohrCircles2-3D/Theory/theory.htm
|
|
|
|
// But the roots(eigenvalues) are calculated by transforming the above equation into
|
|
// s**3 + aa*s + b = 0 and using the trignometric solution.
|
|
// See crc standard mathematical tables 19th edition pp. 103-104.
|
|
|
|
SXX += pressure;
|
|
SYY += pressure;
|
|
SZZ += pressure;
|
|
|
|
double S1, S2, S3;
|
|
double AA, BB, CC, DD, angleP;
|
|
|
|
AA = SXY*SXY + SYZ*SYZ + SZX*SZX - SXX*SYY - SYY*SZZ - SXX*SZZ;
|
|
|
|
BB = SXX * SYZ * SYZ
|
|
+ SYY * SZX * SZX
|
|
+ SZZ * SXY * SXY
|
|
- SXX * SYY * SZZ
|
|
- 2.0 * SXY * SYZ * SZX;
|
|
|
|
if (fabs(AA) < doubleThreshold)
|
|
{
|
|
S1 = 0.0;
|
|
S2 = 0.0;
|
|
S3 = 0.0;
|
|
}
|
|
else
|
|
{
|
|
CC = -sqrt(27.0/AA) * BB * 0.5 / AA;
|
|
|
|
if (CC > 1.0) CC = 1.0;
|
|
else if (CC < -1.0) CC = -1.0;
|
|
|
|
angleP = acos(CC)/3.0;
|
|
DD = 2.0*sqrt(AA/3.0);
|
|
S1 = DD*cos(angleP);
|
|
S2 = DD*cos(angleP + 4.0*cvf::PI_D/3.0);
|
|
S3 = DD*cos(angleP + 2.0*cvf::PI_D/3.0);
|
|
}
|
|
|
|
int idxPMin = 2;
|
|
int idxPMid = 1;
|
|
int idxPMax = 0;
|
|
|
|
double principalsd[3];
|
|
principalsd[idxPMax] = (S1 - pressure);
|
|
principalsd[idxPMid] = (S2 - pressure);
|
|
principalsd[idxPMin] = (S3 - pressure);
|
|
|
|
// Sort the principals if we have no Z component in the tensor at all
|
|
if ((m_tensor[2] == 0.0f) && (m_tensor[4] == 0.0f) && (m_tensor[5] == 0.0f))
|
|
{
|
|
if (fabs(principalsd[idxPMin]) > fabs(principalsd[idxPMid])) std::swap(idxPMin, idxPMid);
|
|
if (fabs(principalsd[idxPMin]) > fabs(principalsd[idxPMax])) std::swap(idxPMin, idxPMax);
|
|
if (principalsd[idxPMax] < principalsd[idxPMid]) std::swap(idxPMax, idxPMid);
|
|
|
|
principalsd[idxPMin] = 0;
|
|
}
|
|
|
|
// Calculate the principal directions if needed
|
|
|
|
if (principalDirections)
|
|
{
|
|
cvf::Mat3d T;
|
|
T(0,0) = m_tensor[0]; T(0,1) = m_tensor[3]; T(0,2) = m_tensor[5];
|
|
T(1,0) = m_tensor[3]; T(1,1) = m_tensor[1]; T(1,2) = m_tensor[4];
|
|
T(2,0) = m_tensor[5]; T(2,1) = m_tensor[4]; T(2,2) = m_tensor[2];
|
|
|
|
principalDirections[0] = cvf::Vec3f(eigenVector3(T, principalsd[idxPMax], NULL));
|
|
principalDirections[0].normalize();
|
|
principalDirections[1] = cvf::Vec3f(eigenVector3(T, principalsd[idxPMid], NULL));
|
|
principalDirections[1].normalize();
|
|
principalDirections[2] = cvf::Vec3f(eigenVector3(T, principalsd[idxPMin], NULL));
|
|
principalDirections[2].normalize();
|
|
}
|
|
|
|
principalValues[0] = (float)principalsd[idxPMax];
|
|
principalValues[1] = (float)principalsd[idxPMid];
|
|
principalValues[2] = (float)principalsd[idxPMin];
|
|
|
|
return principalValues;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template< typename S>
|
|
float caf::Tensor3<S>::calculateVonMises()
|
|
{
|
|
return (float) sqrt( ( (m_tensor[0]*m_tensor[0] + m_tensor[1]*m_tensor[1] + m_tensor[2]*m_tensor[2]) ) +
|
|
( -(m_tensor[0]*m_tensor[1] + m_tensor[1]*m_tensor[2] + m_tensor[0]*m_tensor[2]) ) +
|
|
( 3*(m_tensor[3]*m_tensor[3] + m_tensor[4]*m_tensor[4] + m_tensor[5]*m_tensor[5]) ) );
|
|
}
|
|
|
|
}
|
|
|