ResInsight/ApplicationCode/GeoMech/GeoMechDataModel/RigFemPart.cpp

418 lines
16 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPart.h"
#include "RigFemPartGrid.h"
#include "cvfBoundingBox.h"
#include "cvfBoundingBoxTree.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPart::RigFemPart()
:m_elementPartId(-1), m_characteristicElementSize(std::numeric_limits<float>::infinity())
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPart::~RigFemPart()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::preAllocateElementStorage(int elementCount)
{
m_elementId.reserve(elementCount);
m_elementTypes.reserve(elementCount);
m_elementConnectivityStartIndices.reserve(elementCount);
m_allElementConnectivities.reserve(elementCount*8);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::appendElement(RigElementType elmType, int id, const int* connectivities)
{
m_elementId.push_back(id);
m_elementTypes.push_back(elmType);
m_elementConnectivityStartIndices.push_back(m_allElementConnectivities.size());
int nodeCount = RigFemTypes::elmentNodeCount(elmType);
for (int lnIdx = 0; lnIdx < nodeCount; ++lnIdx)
{
m_allElementConnectivities.push_back(connectivities[lnIdx]);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFemPartGrid* RigFemPart::structGrid() const
{
if (m_structGrid.isNull())
{
m_structGrid = new RigFemPartGrid(this);
}
return m_structGrid.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::assertNodeToElmIndicesIsCalculated()
{
if (m_nodeToElmRefs.size() != nodes().nodeIds.size())
{
this->calculateNodeToElmRefs();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::calculateNodeToElmRefs()
{
m_nodeToElmRefs.resize(nodes().nodeIds.size());
m_nodeGlobalToLocalIndices.resize(nodes().nodeIds.size());
for (int eIdx = 0; eIdx < static_cast<int>(m_elementId.size()); ++eIdx)
{
int elmNodeCount = RigFemTypes::elmentNodeCount(elementType(eIdx));
const int* elmNodes = connectivities(eIdx);
for (int localIdx = 0; localIdx < elmNodeCount; ++localIdx)
{
m_nodeToElmRefs[elmNodes[localIdx]].push_back(eIdx);
m_nodeGlobalToLocalIndices[elmNodes[localIdx]].push_back(localIdx);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigFemPart::elementsUsingNode(int nodeIndex) const
{
return m_nodeToElmRefs[nodeIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<unsigned char>& RigFemPart::elementLocalIndicesForNode(int nodeIndex) const
{
return m_nodeGlobalToLocalIndices[nodeIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::assertElmNeighborsIsCalculated()
{
if (m_elmNeighbors.size() != m_elementId.size())
{
this->calculateElmNeighbors();
}
}
#include "RigFemFaceComparator.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::calculateElmNeighbors()
{
// Calculate elm neighbors: elmIdxs matching each face of the element
RigFemFaceComparator fComp; // Outside loop to avoid memory alloc/dealloc. Rember to set as private in opm parallelization
std::vector<int> candidates;//
m_elmNeighbors.resize(this->elementCount());
for (int eIdx = 0; eIdx < this->elementCount(); ++eIdx)
{
RigElementType elmType = this->elementType(eIdx);
const int* elmNodes = this->connectivities(eIdx);
int faceCount = RigFemTypes::elmentFaceCount(elmType);
int neighborCount = 0;
for (int faceIdx = 0; faceIdx < faceCount; ++faceIdx)
{
m_elmNeighbors[eIdx].indicesToNeighborElms[faceIdx] = -1;
m_elmNeighbors[eIdx].faceInNeighborElm[faceIdx] = -1;
int faceNodeCount = 0;
const int* localFaceIndices = RigFemTypes::localElmNodeIndicesForFace(elmType, faceIdx, &faceNodeCount);
// Get neighbor candidates
candidates.clear();
{
int firstNodeIdxOfFace = elmNodes[localFaceIndices[0]];
const std::vector<int>& candidates1 = this->elementsUsingNode(firstNodeIdxOfFace);
if (!candidates1.empty())
{
// Get neighbor candidates from the diagonal node
int thirdNodeIdxOfFace = elmNodes[localFaceIndices[3]];
const std::vector<int>& candidates2 = this->elementsUsingNode(thirdNodeIdxOfFace);
// The candidates are sorted from smallest to largest, so we do a linear search to find the
// (two) common cells in the two arrays, and leaving this element out, we have one candidate left
size_t idx1 = 0;
size_t idx2 = 0;
while (idx1 < candidates1.size() && idx2 < candidates2.size())
{
if (candidates1[idx1] < candidates2[idx2]){ ++idx1; continue; }
if (candidates1[idx1] > candidates2[idx2]){ ++idx2; continue; }
if (candidates1[idx1] == candidates2[idx2])
{
if (candidates1[idx1] != eIdx)
{
candidates.push_back(candidates1[idx1]);
}
++idx1; ++idx2;
}
}
}
}
if (candidates.size())
{
fComp.setMainFace(elmNodes, localFaceIndices, faceNodeCount);
}
// Check if any of the neighbor candidates faces matches
for (int nbcIdx = 0; nbcIdx < static_cast<int>(candidates.size()); ++nbcIdx)
{
int nbcElmIdx = candidates[nbcIdx];
RigElementType nbcElmType = this->elementType(nbcElmIdx);
const int* nbcElmNodes = this->connectivities(nbcElmIdx);
int nbcFaceCount = RigFemTypes::elmentFaceCount(nbcElmType);
bool isNeighborFound = false;
for (int nbcFaceIdx = 0; nbcFaceIdx < nbcFaceCount; ++nbcFaceIdx)
{
int nbcFaceNodeCount = 0;
const int* nbcLocalFaceIndices = RigFemTypes::localElmNodeIndicesForFace(nbcElmType, nbcFaceIdx, &nbcFaceNodeCount);
// Compare faces
if (fComp.isSameButOposite(nbcElmNodes, nbcLocalFaceIndices, nbcFaceNodeCount))
{
m_elmNeighbors[eIdx].indicesToNeighborElms[faceIdx] = nbcElmIdx;
m_elmNeighbors[eIdx].faceInNeighborElm[faceIdx] = nbcFaceIdx;
isNeighborFound = true;
break;
}
}
if (isNeighborFound)
{
++neighborCount;
break;
}
}
}
if ((faceCount - neighborCount) >= 3)
{
m_possibleGridCornerElements.push_back(eIdx);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RigFemPart::faceNormal(int elmIdx, int faceIdx) const
{
const std::vector<cvf::Vec3f>& nodeCoordinates = this->nodes().coordinates;
RigElementType eType = this->elementType(elmIdx);
const int* elmNodeIndices = this->connectivities(elmIdx);
int faceNodeCount = 0;
const int* localElmNodeIndicesForFace = RigFemTypes::localElmNodeIndicesForFace(eType, faceIdx, &faceNodeCount);
if (faceNodeCount == 4)
{
const cvf::Vec3f* quadVxs[4];
quadVxs[0] = &(nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[0]]]);
quadVxs[1] = &(nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[1]]]);
quadVxs[2] = &(nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[2]]]);
quadVxs[3] = &(nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[3]]]);
cvf::Vec3f normal = (*(quadVxs[2]) - *(quadVxs[0])) ^ (*(quadVxs[3]) - *(quadVxs[1]));
return normal;
}
else if (faceNodeCount != 4)
{
CVF_ASSERT(false);
}
return cvf::Vec3f::ZERO;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
float RigFemPart::characteristicElementSize() const
{
if (m_characteristicElementSize != std::numeric_limits<float>::infinity()) return m_characteristicElementSize;
int elmsToAverageCount = 0;
float sumMaxEdgeLength = 0;
for (int elmIdx = 0; elmIdx < elementCount(); elmIdx++)
{
RigElementType eType = this->elementType(elmIdx);
if (eType == HEX8P)
{
const int* elmentConn = this->connectivities(elmIdx);
cvf::Vec3f nodePos0 = this->nodes().coordinates[elmentConn[0]];
cvf::Vec3f nodePos1 = this->nodes().coordinates[elmentConn[1]];
cvf::Vec3f nodePos3 = this->nodes().coordinates[elmentConn[3]];
cvf::Vec3f nodePos4 = this->nodes().coordinates[elmentConn[4]];
float l1 = (nodePos1-nodePos0).length();
float l3 = (nodePos3-nodePos0).length();
float l4 = (nodePos4-nodePos0).length();
float maxLength = l1 > l3 ? l1: l3;
maxLength = maxLength > l4 ? maxLength: l4;
sumMaxEdgeLength += maxLength;
++elmsToAverageCount;
}
}
CVF_ASSERT(elmsToAverageCount);
m_characteristicElementSize = sumMaxEdgeLength/elmsToAverageCount;
return m_characteristicElementSize;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::BoundingBox RigFemPart::boundingBox() const
{
if (m_boundingBox.isValid()) return m_boundingBox;
size_t nodeCount = nodes().coordinates.size();
for (size_t nIdx = 0; nIdx < nodeCount; ++nIdx)
{
m_boundingBox.add(nodes().coordinates[nIdx]);
}
return m_boundingBox;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPart::findIntersectingCells(const cvf::BoundingBox& inputBB, std::vector<size_t>* elementIndices) const
{
if (m_elementSearchTree.isNull())
{
// build tree
size_t elmCount = elementCount();
std::vector<cvf::BoundingBox> cellBoundingBoxes;
cellBoundingBoxes.resize(elmCount);
for (size_t elmIdx = 0; elmIdx < elmCount; ++elmIdx)
{
const int* cellIndices = connectivities(elmIdx);
cvf::BoundingBox& cellBB = cellBoundingBoxes[elmIdx];
cellBB.add(m_nodes.coordinates[cellIndices[0]]);
cellBB.add(m_nodes.coordinates[cellIndices[1]]);
cellBB.add(m_nodes.coordinates[cellIndices[2]]);
cellBB.add(m_nodes.coordinates[cellIndices[3]]);
cellBB.add(m_nodes.coordinates[cellIndices[4]]);
cellBB.add(m_nodes.coordinates[cellIndices[5]]);
cellBB.add(m_nodes.coordinates[cellIndices[6]]);
cellBB.add(m_nodes.coordinates[cellIndices[7]]);
}
m_elementSearchTree = new cvf::BoundingBoxTree;
m_elementSearchTree->buildTreeFromBoundingBoxes(cellBoundingBoxes, nullptr);
}
m_elementSearchTree->findIntersections(inputBB, elementIndices);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigFemPart::elementNodeResultCount() const
{
int lastElmIdx = this->elementCount() - 1;
if (lastElmIdx < 0) return 0;
RigElementType elmType = this->elementType(lastElmIdx);
int elmNodeCount = RigFemTypes::elmentNodeCount(elmType);
size_t lastElmResultIdx = this->elementNodeResultIdx(lastElmIdx, elmNodeCount -1);
return lastElmResultIdx + 1;
}
//--------------------------------------------------------------------------------------------------
/// Generate a sensible index into the result vector based on which result position type is used.
//--------------------------------------------------------------------------------------------------
size_t RigFemPart::resultValueIdxFromResultPosType(RigFemResultPosEnum resultPosType, int elementIdx, int elmLocalNodeIdx) const
{
if (resultPosType == RIG_ELEMENT || resultPosType == RIG_FORMATION_NAMES)
{
CVF_ASSERT(elementIdx < m_elementId.size());
return elementIdx;
}
size_t elementNodeResultIdx = this->elementNodeResultIdx(static_cast<int>(elementIdx), elmLocalNodeIdx);
CVF_ASSERT(elementNodeResultIdx < elementNodeResultCount());
if (resultPosType == RIG_ELEMENT_NODAL || resultPosType == RIG_INTEGRATION_POINT)
{
return elementNodeResultIdx;
}
else if (resultPosType == RIG_NODAL)
{
size_t nodeIdx = nodeIdxFromElementNodeResultIdx(elementNodeResultIdx);
CVF_ASSERT(nodeIdx < m_nodes.nodeIds.size());
return nodeIdx;
}
CVF_ASSERT(false);
return 0u;
}