opm-common/tests/test_chiflash.cpp

622 lines
24 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This is test for the SPE5 fluid system (which uses the
* Peng-Robinson EOS) and the NCP flash solver.
*/
#include "config.h"
#include <opm/material/constraintsolvers/ChiFlash.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/Spe5FluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <dune/common/parallel/mpihelper.hh>
template <class FluidSystem, class FluidState>
void createSurfaceGasFluidSystem(FluidState& gasFluidState)
{
static const int gasPhaseIdx = FluidSystem::gasPhaseIdx;
// temperature
gasFluidState.setTemperature(273.15 + 20);
// gas pressure
gasFluidState.setPressure(gasPhaseIdx, 1e5);
// gas saturation
gasFluidState.setSaturation(gasPhaseIdx, 1.0);
// gas composition: mostly methane, a bit of propane
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::H2OIdx, 0.0);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C1Idx, 0.94);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C3Idx, 0.06);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C6Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C10Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C15Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C20Idx, 0.00);
// gas density
typename FluidSystem::template ParameterCache<typename FluidState::Scalar> paramCache;
paramCache.updatePhase(gasFluidState, gasPhaseIdx);
gasFluidState.setDensity(gasPhaseIdx,
FluidSystem::density(gasFluidState, paramCache, gasPhaseIdx));
}
template <class Scalar, class FluidSystem, class FluidState>
Scalar computeSumxg(FluidState& resultFluidState,
const FluidState& prestineFluidState,
const FluidState& gasFluidState,
Scalar additionalGas)
{
static const int oilPhaseIdx = FluidSystem::oilPhaseIdx;
static const int gasPhaseIdx = FluidSystem::gasPhaseIdx;
static const int numComponents = FluidSystem::numComponents;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
typedef Opm::NcpFlash<Scalar, FluidSystem> Flash;
resultFluidState.assign(prestineFluidState);
// add a bit of additional gas components
ComponentVector totalMolarities;
for (unsigned compIdx = 0; compIdx < FluidSystem::numComponents; ++ compIdx)
totalMolarities =
prestineFluidState.molarity(oilPhaseIdx, compIdx)
+ additionalGas*gasFluidState.moleFraction(gasPhaseIdx, compIdx);
// "flash" the modified fluid state
typename FluidSystem::ParameterCache paramCache;
Flash::solve(resultFluidState, totalMolarities);
Scalar sumxg = 0;
for (unsigned compIdx = 0; compIdx < FluidSystem::numComponents; ++compIdx)
sumxg += resultFluidState.moleFraction(gasPhaseIdx, compIdx);
return sumxg;
}
template <class Scalar, class FluidSystem, class FluidState>
void makeOilSaturated(FluidState& fluidState, const FluidState& gasFluidState)
{
static const int gasPhaseIdx = FluidSystem::gasPhaseIdx;
FluidState prestineFluidState;
prestineFluidState.assign(fluidState);
Scalar sumxg = 0;
for (unsigned compIdx = 0; compIdx < FluidSystem::numComponents; ++compIdx)
sumxg += fluidState.moleFraction(gasPhaseIdx, compIdx);
// Newton method
Scalar tol = 1e-8;
Scalar additionalGas = 0; // [mol]
for (int i = 0; std::abs(sumxg - 1) > tol; ++i) {
if (i > 50)
throw std::runtime_error("Newton method did not converge after 50 iterations");
Scalar eps = std::max(1e-8, additionalGas*1e-8);
Scalar f = 1 - computeSumxg<Scalar, FluidSystem>(prestineFluidState,
fluidState,
gasFluidState,
additionalGas);
Scalar fStar = 1 - computeSumxg<Scalar, FluidSystem>(prestineFluidState,
fluidState,
gasFluidState,
additionalGas + eps);
Scalar fPrime = (fStar - f)/eps;
additionalGas -= f/fPrime;
};
}
template <class FluidSystem, class FluidState>
void guessInitial(FluidState& fluidState, unsigned phaseIdx)
{
if (phaseIdx == FluidSystem::gasPhaseIdx) {
fluidState.setMoleFraction(phaseIdx, FluidSystem::H2OIdx, 0.0);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C1Idx, 0.74785);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C3Idx, 0.0121364);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C6Idx, 0.00606028);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C10Idx, 0.00268136);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C15Idx, 0.000204256);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C20Idx, 8.78291e-06);
}
else if (phaseIdx == FluidSystem::oilPhaseIdx) {
fluidState.setMoleFraction(phaseIdx, FluidSystem::H2OIdx, 0.0);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C1Idx, 0.50);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C3Idx, 0.03);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C6Idx, 0.07);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C10Idx, 0.20);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C15Idx, 0.15);
fluidState.setMoleFraction(phaseIdx, FluidSystem::C20Idx, 0.05);
}
else {
assert(phaseIdx == FluidSystem::waterPhaseIdx);
}
}
template <class Scalar, class FluidSystem, class FluidState>
Scalar bringOilToSurface(FluidState& surfaceFluidState, Scalar alpha, const FluidState& reservoirFluidState, bool guessInitial)
{
enum {
numPhases = FluidSystem::numPhases,
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
oilPhaseIdx = FluidSystem::oilPhaseIdx,
numComponents = FluidSystem::numComponents
};
typedef Opm::NcpFlash<Scalar, FluidSystem> Flash;
typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits;
typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
const Scalar refPressure = 1.0135e5; // [Pa]
// set the parameters for the capillary pressure law
MaterialLawParams matParams;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
matParams.setPcMinSat(phaseIdx, 0.0);
matParams.setPcMaxSat(phaseIdx, 0.0);
}
matParams.finalize();
// retieve the global volumetric component molarities
surfaceFluidState.setTemperature(273.15 + 20);
ComponentVector molarities;
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx)
molarities[compIdx] = reservoirFluidState.molarity(oilPhaseIdx, compIdx);
if (guessInitial) {
// we start at a fluid state with reservoir oil.
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) {
surfaceFluidState.setMoleFraction(phaseIdx,
compIdx,
reservoirFluidState.moleFraction(phaseIdx, compIdx));
}
surfaceFluidState.setDensity(phaseIdx, reservoirFluidState.density(phaseIdx));
surfaceFluidState.setPressure(phaseIdx, reservoirFluidState.pressure(phaseIdx));
surfaceFluidState.setSaturation(phaseIdx, 0.0);
}
surfaceFluidState.setSaturation(oilPhaseIdx, 1.0);
surfaceFluidState.setSaturation(gasPhaseIdx, 1.0 - surfaceFluidState.saturation(oilPhaseIdx));
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(surfaceFluidState);
// increase volume until we are at surface pressure. use the
// newton method for this
ComponentVector tmpMolarities;
for (int i = 0;; ++i) {
if (i >= 20)
throw Opm::NumericalIssue("Newton method did not converge after 20 iterations");
// calculate the deviation from the standard pressure
tmpMolarities = molarities;
tmpMolarities /= alpha;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
Scalar f = surfaceFluidState.pressure(gasPhaseIdx) - refPressure;
// calculate the derivative of the deviation from the standard
// pressure
Scalar eps = alpha*1e-10;
tmpMolarities = molarities;
tmpMolarities /= alpha + eps;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
Scalar fStar = surfaceFluidState.pressure(gasPhaseIdx) - refPressure;
Scalar fPrime = (fStar - f)/eps;
// newton update
Scalar delta = f/fPrime;
alpha -= delta;
if (std::abs(delta) < std::abs(alpha)*1e-9) {
break;
}
}
// calculate the final result
tmpMolarities = molarities;
tmpMolarities /= alpha;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
return alpha;
}
template <class RawTable>
void printResult(const RawTable& rawTable,
const std::string& fieldName,
size_t firstIdx,
size_t secondIdx,
double hiresThres)
{
std::cout << "std::vector<std::pair<Scalar, Scalar> > "<<fieldName<<" = {\n";
size_t sampleIdx = 0;
size_t numSamples = 20;
size_t numRawHires = 0;
for (; rawTable[numRawHires][firstIdx] > hiresThres; ++numRawHires)
{}
for (; sampleIdx < numSamples; ++sampleIdx) {
size_t rawIdx = sampleIdx*numRawHires/numSamples;
std::cout << "{ " << rawTable[rawIdx][firstIdx] << ", "
<< rawTable[rawIdx][secondIdx] << " }"
<< ",\n";
}
numSamples = 15;
for (sampleIdx = 0; sampleIdx < numSamples; ++sampleIdx) {
size_t rawIdx = sampleIdx*(rawTable.size() - numRawHires)/numSamples + numRawHires;
std::cout << "{ " << rawTable[rawIdx][firstIdx] << ", "
<< rawTable[rawIdx][secondIdx] << " }";
if (sampleIdx < numSamples - 1)
std::cout << ",\n";
else
std::cout << "\n";
}
std::cout << "};\n";
}
template <class Scalar>
inline void testAll()
{
typedef Opm::Spe5FluidSystem<Scalar> FluidSystem;
enum {
numPhases = FluidSystem::numPhases,
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
oilPhaseIdx = FluidSystem::oilPhaseIdx,
numComponents = FluidSystem::numComponents,
H2OIdx = FluidSystem::H2OIdx,
C1Idx = FluidSystem::C1Idx,
C3Idx = FluidSystem::C3Idx,
C6Idx = FluidSystem::C6Idx,
C10Idx = FluidSystem::C10Idx,
C15Idx = FluidSystem::C15Idx,
C20Idx = FluidSystem::C20Idx
};
typedef Opm::NcpFlash<Scalar, FluidSystem> Flash;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> FluidState;
typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits;
typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache;
////////////
// Initialize the fluid system and create the capillary pressure
// parameters
////////////
Scalar T = 273.15 + 20; // 20 deg Celsius
FluidSystem::init(/*minTemperature=*/T - 1,
/*maxTemperature=*/T + 1,
/*minPressure=*/1.0e4,
/*maxTemperature=*/40.0e6);
// set the parameters for the capillary pressure law
MaterialLawParams matParams;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
matParams.setPcMinSat(phaseIdx, 0.0);
matParams.setPcMaxSat(phaseIdx, 0.0);
}
matParams.finalize();
////////////
// Create a fluid state
////////////
FluidState gasFluidState;
createSurfaceGasFluidSystem<FluidSystem>(gasFluidState);
FluidState fluidState;
ParameterCache paramCache;
// temperature
fluidState.setTemperature(T);
// oil pressure
fluidState.setPressure(oilPhaseIdx, 4000 * 6894.7573); // 4000 PSI
// oil saturation
fluidState.setSaturation(oilPhaseIdx, 1.0);
fluidState.setSaturation(gasPhaseIdx, 1.0 - fluidState.saturation(oilPhaseIdx));
// oil composition: SPE-5 reservoir oil
fluidState.setMoleFraction(oilPhaseIdx, H2OIdx, 0.0);
fluidState.setMoleFraction(oilPhaseIdx, C1Idx, 0.50);
fluidState.setMoleFraction(oilPhaseIdx, C3Idx, 0.03);
fluidState.setMoleFraction(oilPhaseIdx, C6Idx, 0.07);
fluidState.setMoleFraction(oilPhaseIdx, C10Idx, 0.20);
fluidState.setMoleFraction(oilPhaseIdx, C15Idx, 0.15);
fluidState.setMoleFraction(oilPhaseIdx, C20Idx, 0.05);
//makeOilSaturated<Scalar, FluidSystem>(fluidState, gasFluidState);
// set the saturations and pressures of the other phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (phaseIdx != oilPhaseIdx) {
fluidState.setSaturation(phaseIdx, 0.0);
fluidState.setPressure(phaseIdx, fluidState.pressure(oilPhaseIdx));
}
// initial guess for the composition (needed by the ComputeFromReferencePhase
// constraint solver. TODO: bug in ComputeFromReferencePhase?)
guessInitial<FluidSystem>(fluidState, phaseIdx);
}
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
CFRP::solve(fluidState,
paramCache,
/*refPhaseIdx=*/oilPhaseIdx,
/*setViscosity=*/false,
/*setEnthalpy=*/false);
////////////
// Calculate the total molarities of the components
////////////
ComponentVector totalMolarities;
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx)
totalMolarities[compIdx] = fluidState.saturation(oilPhaseIdx)*fluidState.molarity(oilPhaseIdx, compIdx);
////////////
// Gradually increase the volume for and calculate the gas
// formation factor, oil formation volume factor and gas formation
// volume factor.
////////////
FluidState flashFluidState, surfaceFluidState;
flashFluidState.assign(fluidState);
//Flash::guessInitial(flashFluidState, totalMolarities);
Flash::template solve<MaterialLaw>(flashFluidState, matParams, paramCache, totalMolarities);
Scalar surfaceAlpha = 1;
surfaceAlpha = bringOilToSurface<Scalar, FluidSystem>(surfaceFluidState, surfaceAlpha, flashFluidState, /*guessInitial=*/true);
Scalar rho_gRef = surfaceFluidState.density(gasPhaseIdx);
Scalar rho_oRef = surfaceFluidState.density(oilPhaseIdx);
std::vector<std::array<Scalar, 10> > resultTable;
Scalar minAlpha = 0.98;
Scalar maxAlpha = surfaceAlpha;
std::cout << "alpha[-] p[Pa] S_g[-] rho_o[kg/m^3] rho_g[kg/m^3] <M_o>[kg/mol] <M_g>[kg/mol] R_s[m^3/m^3] B_g[-] B_o[-]\n";
int n = 300;
for (int i = 0; i < n; ++i) {
// ratio between the original and the current volume
Scalar alpha = minAlpha + (maxAlpha - minAlpha)*i/(n - 1);
// increasing the volume means decreasing the molartity
ComponentVector curTotalMolarities = totalMolarities;
curTotalMolarities /= alpha;
// "flash" the modified reservoir oil
Flash::template solve<MaterialLaw>(flashFluidState, matParams, paramCache, curTotalMolarities);
surfaceAlpha = bringOilToSurface<Scalar, FluidSystem>(surfaceFluidState,
surfaceAlpha,
flashFluidState,
/*guessInitial=*/false);
Scalar Rs =
surfaceFluidState.saturation(gasPhaseIdx)
/ surfaceFluidState.saturation(oilPhaseIdx);
std::cout << alpha << " "
<< flashFluidState.pressure(oilPhaseIdx) << " "
<< flashFluidState.saturation(gasPhaseIdx) << " "
<< flashFluidState.density(oilPhaseIdx) << " "
<< flashFluidState.density(gasPhaseIdx) << " "
<< flashFluidState.averageMolarMass(oilPhaseIdx) << " "
<< flashFluidState.averageMolarMass(gasPhaseIdx) << " "
<< Rs << " "
<< rho_gRef/flashFluidState.density(gasPhaseIdx) << " "
<< rho_oRef/flashFluidState.density(oilPhaseIdx) << " "
<< "\n";
std::array<Scalar, 10> tmp;
tmp[0] = alpha;
tmp[1] = flashFluidState.pressure(oilPhaseIdx);
tmp[2] = flashFluidState.saturation(gasPhaseIdx);
tmp[3] = flashFluidState.density(oilPhaseIdx);
tmp[4] = flashFluidState.density(gasPhaseIdx);
tmp[5] = flashFluidState.averageMolarMass(oilPhaseIdx);
tmp[6] = flashFluidState.averageMolarMass(gasPhaseIdx);
tmp[7] = Rs;
tmp[8] = rho_gRef/flashFluidState.density(gasPhaseIdx);
tmp[9] = rho_oRef/flashFluidState.density(oilPhaseIdx);
resultTable.push_back(tmp);
}
std::cout << "reference density oil [kg/m^3]: " << rho_oRef << "\n";
std::cout << "reference density gas [kg/m^3]: " << rho_gRef << "\n";
Scalar hiresThresholdPressure = resultTable[20][1];
printResult(resultTable,
"Bg", /*firstIdx=*/1, /*secondIdx=*/8,
/*hiresThreshold=*/hiresThresholdPressure);
printResult(resultTable,
"Bo", /*firstIdx=*/1, /*secondIdx=*/9,
/*hiresThreshold=*/hiresThresholdPressure);
printResult(resultTable,
"Rs", /*firstIdx=*/1, /*secondIdx=*/7,
/*hiresThreshold=*/hiresThresholdPressure);
}
void testChiFlash()
{
using Scalar = double;
typedef Opm::Spe5FluidSystem<Scalar> FluidSystem;
enum {
numPhases = FluidSystem::numPhases,
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
oilPhaseIdx = FluidSystem::oilPhaseIdx,
numComponents = FluidSystem::numComponents,
H2OIdx = FluidSystem::H2OIdx,
C1Idx = FluidSystem::C1Idx,
C3Idx = FluidSystem::C3Idx,
C6Idx = FluidSystem::C6Idx,
C10Idx = FluidSystem::C10Idx,
C15Idx = FluidSystem::C15Idx,
C20Idx = FluidSystem::C20Idx
};
//typedef Opm::NcpFlash<Scalar, FluidSystem> Flash;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> FluidState;
typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits;
typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache;
////////////
// Initialize the fluid system and create the capillary pressure
// parameters
////////////
Scalar T = 273.15 + 20; // 20 deg Celsius
FluidSystem::init(/*minTemperature=*/T - 1,
/*maxTemperature=*/T + 1,
/*minPressure=*/1.0e4,
/*maxTemperature=*/40.0e6);
// set the parameters for the capillary pressure law
MaterialLawParams matParams;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
matParams.setPcMinSat(phaseIdx, 0.0);
matParams.setPcMaxSat(phaseIdx, 0.0);
}
matParams.finalize();
////////////
// Create a fluid state
////////////
FluidState gasFluidState;
createSurfaceGasFluidSystem<FluidSystem>(gasFluidState);
FluidState fluidState;
ParameterCache paramCache;
// temperature
fluidState.setTemperature(T);
// oil pressure
fluidState.setPressure(oilPhaseIdx, 4000 * 6894.7573); // 4000 PSI
// oil saturation
fluidState.setSaturation(oilPhaseIdx, 1.0);
fluidState.setSaturation(gasPhaseIdx, 1.0 - fluidState.saturation(oilPhaseIdx));
// oil composition: SPE-5 reservoir oil
fluidState.setMoleFraction(oilPhaseIdx, H2OIdx, 0.0);
fluidState.setMoleFraction(oilPhaseIdx, C1Idx, 0.50);
fluidState.setMoleFraction(oilPhaseIdx, C3Idx, 0.03);
fluidState.setMoleFraction(oilPhaseIdx, C6Idx, 0.07);
fluidState.setMoleFraction(oilPhaseIdx, C10Idx, 0.20);
fluidState.setMoleFraction(oilPhaseIdx, C15Idx, 0.15);
fluidState.setMoleFraction(oilPhaseIdx, C20Idx, 0.05);
//makeOilSaturated<Scalar, FluidSystem>(fluidState, gasFluidState);
// set the saturations and pressures of the other phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (phaseIdx != oilPhaseIdx) {
fluidState.setSaturation(phaseIdx, 0.0);
fluidState.setPressure(phaseIdx, fluidState.pressure(oilPhaseIdx));
}
// initial guess for the composition (needed by the ComputeFromReferencePhase
// constraint solver. TODO: bug in ComputeFromReferencePhase?)
guessInitial<FluidSystem>(fluidState, phaseIdx);
}
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
CFRP::solve(fluidState,
paramCache,
/*refPhaseIdx=*/oilPhaseIdx,
/*setViscosity=*/false,
/*setEnthalpy=*/false);
////////////
// Calculate the total molarities of the components
////////////
ComponentVector totalMolarities;
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx)
totalMolarities[compIdx] = fluidState.saturation(oilPhaseIdx)*fluidState.molarity(oilPhaseIdx, compIdx);
////////////
// Gradually increase the volume for and calculate the gas
// formation factor, oil formation volume factor and gas formation
// volume factor.
////////////
FluidState flashFluidState, surfaceFluidState;
flashFluidState.assign(fluidState);
//Flash::guessInitial(flashFluidState, totalMolarities);
using E = Opm::DenseAd::Evaluation<double, 3>;
using Flash = Opm::ChiFlash<double, E, FluidSystem>;
Flash::solve(flashFluidState, {0.9, 0.1}, 123456, 5, "SSI", 1e-8);
}
int main(int argc, char **argv)
{
Dune::MPIHelper::instance(argc, argv);
testAll<double>();
// the Peng-Robinson test currently does not work with single-precision floating
// point scalars because of precision issues. (these are caused by the fact that the
// test uses finite differences to calculate derivatives.)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunreachable-code"
while (0) testAll<float>();
#pragma GCC diagnostic pop
testChiFlash();
return 0;
}