opm-common/tests/test_co2brine_ptflash.cpp

147 lines
5.7 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
2022-06-27 06:11:28 -05:00
Copyright 2022 NORCE.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
2022-06-23 16:55:37 -05:00
* \brief This is test for the PTFlash flash solver.
*/
#include "config.h"
2022-06-23 16:55:37 -05:00
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <opm/material/fluidsystems/Co2BrineFluidSystem.hh>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <dune/common/parallel/mpihelper.hh>
// the following include should be removed later
// #include <opm/material/fluidsystems/chifluid/chiwoms.h>
void testCo2BrineFlash()
{
using Scalar = double;
using FluidSystem = Opm::Co2BrineFluidSystem<Scalar>;
constexpr auto numComponents = FluidSystem::numComponents;
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
// input
Evaluation p_init = Evaluation::createVariable(10e5, 0); // 10 bar
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, 1);
comp[1] = 1. - comp[0];//Evaluation::createVariable(0.1, 1);
//comp[2] = 0;//1. - comp[0] - comp[1];
ComponentVector sat;
sat[0] = 1.0; sat[1] = 1.0-sat[0];
// TODO: should we put the derivative against the temperature here?
Scalar temp = 300.0;
// From co2-compositional branch, it uses
// typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache;
FluidState fs;
// TODO: no capillary pressure for now
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
//fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
//fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
// It is used here only for calculate the z
fs.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
fs.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
fs.setTemperature(temp);
// ParameterCache paramCache;
{
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
}
ComponentVector zInit(0.); // TODO; zInit needs to be normalized.
{
Scalar sumMoles = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar tmp = Opm::getValue(fs.molarity(phaseIdx, compIdx) * fs.saturation(phaseIdx));
zInit[compIdx] += Opm::max(tmp, 1e-8);
sumMoles += tmp;
}
}
zInit /= sumMoles;
// initialize the derivatives
// TODO: the derivative eventually should be from the reservoir flow equations
Evaluation z_last = 1.;
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
zInit[compIdx] = Evaluation::createVariable(Opm::getValue(zInit[compIdx]), compIdx + 1);
z_last -= zInit[compIdx];
}
zInit[numComponents - 1] = z_last;
}
// TODO: only, p, z need the derivatives.
const double flash_tolerance = 1.e-12; // just to test the setup in co2-compositional
const int flash_verbosity = 1;
//const std::string flash_twophase_method = "ssi"; // "ssi"
//const std::string flash_twophase_method = "newton";
const std::string flash_twophase_method = "newton";
// TODO: should we set these?
// Set initial K and L
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation Ktmp = fs.wilsonK_(compIdx);
fs.setKvalue(compIdx, Ktmp);
}
const Evaluation Ltmp = 1.;
fs.setLvalue(Ltmp);
const int spatialIdx = 0;
2022-06-23 16:55:37 -05:00
using Flash = Opm::PTFlash<double, FluidSystem>;
// TODO: here the zInit does not have the proper derivatives
Flash::solve(fs, zInit, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
}
int main(int argc, char **argv)
{
Dune::MPIHelper::instance(argc, argv);
testCo2BrineFlash();
return 0;
}